APPENDIX B. MODEL DOCUMENTATION

Table of Contents

1	Model and Rationale for Conversion to Visual Basic for Applications		1
2	2.1 SP 2.2 MC 2.3 GE 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5	Direct contact through dietary exposure – phase partitioning Growth	2 3 4 5 7 10 11 11 12 13
3	Comp	lete VBA Model Code	16
4	Refer	ences	60
Τá	ables		
Та	ble 1.	Identifying numbers for species used in model code	11
Та	ble 2.	Definition of equation variables for phytoplankton/algae	12
Та	ble 3.	Definition of equation variables for small forage fish	14

1 Model and Rationale for Conversion to Visual Basic for Applications

The primary goal of mechanistic modeling for the Lower Passaic River Study Area (LPRSA) remedial investigation/feasibility study (RI/FS) is to develop a predictive relationship among chemical concentrations in sediment, water, and tissue. This relationship will be used to derive preliminary remediation goals (PRGs) in sediment and compare remedial alternatives for chemicals that are present in fish tissue, water, and sediment at concentrations associated with unacceptable risk. The mechanistic model is based on algorithms and equations initially established by Gobas (1993). This model has been used as the basis for many subsequent updates and iterations of Gobas-type models, including refinements and simplifications (Arnot and Gobas 2004; Morrison et al. 1996, 1997). The driving force of these fugacity-based models is phase partitioning. The first type of partitioning occurs between water and the organism, and the second occurs during the digestion process between prey items or ingested sediment and the organism.

Mechanistic bioaccumulation models have been used in a broad range of environments (i.e., lakes, rivers, and estuaries), as described in Section 2.1 of the main text and in Appendix A. This LPRSA bioaccumulation model was adapted from the Arnot-Gobas (2004) model but was transferred into Visual Basic for Applications® (VBA) code.

Passing inputs and outputs for the VBA version of the mechanistic model is accomplished through the use of Microsoft Excel® spreadsheets. An effort was made to avoid complicated (although perhaps more efficient) coding in order to preserve the transparency of the way the model functions. Use of Excel® for the biotic model interface facilitates the concurrent use of Monte Carlo software for enhanced uncertainty and sensitivity analyses. This combination of software makes it possible to run multiple iterations of the model. This appendix describes the components of the model and presents the VBA code used to run the model. The acronyms provided in the model and sub-model explanations (inputs and outputs) are the same as those used in the VBA code, unless otherwise indicated.

The remainder of this appendix is organized as follows:

- Section 2 General Processes and Structure of the Model
- ◆ Section 3 Complete VBA Model Code
- ♦ Section 4 References

2 General Processes and Structure of the Model

This section presents an overview of the species and modeling areas used in the model, modeling setup and assumptions, equations used to represent physical and chemical processes, equations used to represent general biological processes, and an overview of species-specific calculations.

2.1 Species and Modeling Areas

The species groups (and representative species, where applicable) that were modeled for the LPRSA bioaccumulation model are as follows:

- Phytoplankton/algae
- Zooplankton
- Benthic invertebrate deposit feeders (DEPs)
- Benthic invertebrate detritivores (DETs)
- Benthic invertebrate carnivore/omnivores (C/Os)
- Small filter feeding fish
- Small forage fish
- Blue crab
- Benthic omnivorous fish (represented by carp)
- Benthic omnivorous/invertivorous fish (represented by catfish)
- Small invertivorous fish (represented by white perch)
- Piscivorous fish (represented by American eel)
- Piscivorous freshwater fish (represented by freshwater bass)

Additional information about the model structure, selected trophic levels, and representative species are provided in the main text and in Appendices E and F.

For each species, a modeling area was determined based on site-specific catch information, as well as on literature information regarding the potential habitat of the various species (e.g., information regarding species salinity tolerance). This information is discussed in detail in Section 3.2.3 of the main report. The modeling areas used for each species are as follows:

- RM 0 to RM 17.4 (i.e., site wide) The site-wide modeling area was selected for small filter-feeding fish, small forage fish (mudflats only), blue crab, white perch, and American eel.
- ◆ RM 4 to RM 17.4 This modeling area was selected for catfish.
- ◆ RM 7 to RM 17.4 This modeling area was selected for carp and bass.

Additionally, it should be noted that for small forage fish, the modeling area was defined to include only mudflat areas within the LPRSA, which were defined as shallow

LPRSA Bioaccumulation Model Calibration Report – Appendix B

areas with gradual river bottom slopes (corresponding to lower water velocities). This definition was based on information regarding the inability of these fish to tolerate higher water velocities and their preference for shallow water habitats; catch data from the LRPSA for these species corroborated this modeling area definition (see Section 3.2.3 of the main report for more information).

This definition of the modeling area for small forage fish necessitated separate code specific to the mudflat areas to estimate exposure for small forage fish and their prey (i.e., in addition to the river-wide calculations for other species). This code can be seen in the complete model code presented in Section 3 of this appendix.

For catfish, carp, and bass (i.e., species for which the modeling area was identified as smaller than the site due to their reduced salinity tolerance), separate model code was not needed. Rather, controls in the model spreadsheet were used to determine the chemical concentrations to which these species were exposed.

2.2 MODEL SETUP AND ASSUMPTIONS

The LPRSA bioaccumulation model was designed around the premise that a single equation may be used to represent the exchange of non-ionic organic chemicals between an organism and its environment (Arnot and Gobas 2004). The conceptual equation, which underlies the model and describes the net flux of a parent chemical being absorbed or deposited (dM_B) by an organism at any time (dt), is:

$$\frac{dM_{B}}{dt} = \left\{ W_{B} \cdot \left(k_{1} \cdot \left[m_{O} \cdot C_{WD,O} + m_{P} C_{WD,P} \right] + k_{D} \cdot \sum_{i} \left(P_{i} \cdot C_{D,i} \right) \right) \right\} - \left(k_{2} + k_{E} + k_{M} \right) \cdot M_{B}$$
 Equation 1

Where:

= mass of chemical in organism (g), at a time t

= point in time dt

 $\begin{array}{lll} W_B & = & \text{wet weight of organism (kg)} \\ k_1 & = & \text{clearance rate constant for water ventilated by organism (L/kg×day)} \\ m_o & = & \text{fraction of respiratory ventilation involving overlying water (unitless)} \end{array}$

= fraction of respiratory ventilation involving sediment-associated porewater

(unitless)

 $C_{WD,O}$ = total freely dissolved chemical concentration in overlying water (g/L)

C_{WD,P} = total freely dissolved chemical concentration in sediment-associated

porewater (g/L)

 \mathbf{k}_{D} = clearance rate constant via ingestion of food and water (kg/kg×day)

= fraction of the diet composed of prey item i (unitless)

 $\begin{matrix} C_{\text{D},i} \\ k_2 \end{matrix}$ = chemical concentration in prey item i (g/kg) = gill and skin elimination rate constant (1/day)

= rate constant for chemical elimination via excretion into egested feces (1/day)

= metabolic biotransformation rate constant of the chemical (1/day) k_{M}

= mass of chemical in organism (g)

For model calibration, a steady state version of the model is required. The steady state solution is derived by first dividing both sides of Equation 1 by W_B to convert mass into a wet weight concentration of the chemical in the organism (C_B), then setting the rate

of change term dC_B/dt to zero (i.e., no change = steady state). So, Equation 2 is the steady state equation used to assess biomagnification and bioaccumulation up the food chain:

$$C_{B} = \frac{k_{1} \times \left(m_{O} \times C_{WD,O} + m_{P} \times C_{WD,P}\right) + k_{D} \times \sum P_{i} \times C_{D,i}}{k_{2} + k_{E} + k_{G} + k_{M}}$$
Equation 2

Where:

C_B = chemical concentration in organism (g/kg ww)

 k_1 = clearance rate constant for water ventilated by organism (L/kg×day) m_0 = fraction of respiratory ventilation involving overlying water (unitless) $C_{WD,O}$ = total bioavailable chemical concentration in overlying water (g/L)

m_p = fraction of respiratory ventilation involving sediment-associated porewater

(unitless)

 $C_{WD,P}$ = total freely dissolved chemical concentration in sediment-associated

porewater (g/L)

k_D = clearance rate constant via ingestion of food and water (kg/kg×day)

P_i = fraction of the diet composed of prey item i (unitless)

C_{D,i} = chemical concentration in prey item i (g/kg) k₂ = gill and skin elimination rate constant (1/day)

 k_E = rate constant for chemical elimination via excretion into egested feces (1/day)

 k_G = growth rate constant (1/day)

 k_M = metabolic biotransformation rate constant of the chemical (1/day)

A number of specific sub-models are used to define the rate coefficients in the steady-state equation. These sub-models can be broken down into three categories: physical, chemical, and biological processes. Additional variables are required to parameterize the sub-models and are defined below as the sub-models are presented.

2.3 GENERAL BIOLOGICAL PROCESSES

The general biological processes included in the model are described below. In some cases, the acronyms used by Arnot and Gobas (2004) and described below vary slightly from the acronyms used in the VBA model. For example, the clearance rate via respiration is described below as k_1 and is included in the model code as K1, and the dietary absorption efficiency of lipid ϵ_L is included in the model code as eL.

2.3.1 Dietary apportionment

Diets of fish and invertebrates are likely to be variable because of opportunistic feeding behavior and seasonal and spatial variations in prey availability. The presence of natural fluctuations in dietary preferences is addressed by normalizing dietary fractions across a "menu" of possible food items. Each trophic group is assigned one best estimate of dietary items and portion of each dietary item. Details on selected best estimates for dietary items and portions of dietary items are presented in the main text and in Appendix H.

Dietary exposure to ingested prey tissue and ingested sediment affects the consumer during the digestion process. Phase partitioning occurs across the gut wall, and

chemicals may be absorbed into the tissues or expelled from the tissues into the gut contents. This exchange of chemicals during the digestive process is discussed in greater detail in Section 2.3.3.

2.3.2 Direct contact through water exposure – phase partitioning

Organic chemicals are thought to partition between lipid, protein, carbohydrate (collectively known as NLOM and NLOC), and water. The sorption and storage of chemicals may occur to a certain extent in each of these media for each organism modeled. Therefore, an organism-water partitioning coefficient (K_{BW}), which results from direct contact with water during respiration, is determined for each organism according to Equation 3.

$$k_{BW} = \frac{k_1}{k_2} = V_{LB} \times K_{OW} + V_{NB} \times \beta \times K_{OW} + V_{WB}$$
Equation 3

Where:

K_{BW} = organism-specific water partitioning coefficient (unitless)

 k_1 = clearance rate constant for water ventilated by organism (L/kg×day)

 k_2 = gill and skin elimination rate constant (1/day) V_{LB} = lipid fraction of the organism (unitless)

V_{NB} = NLOM fraction of the organism (unitless)
V_{WB} = water fraction of the organism (unitless)

 β (BETA) = NLOM-octanol proportionality constant (unitless)

K_{OW} = chemical-specific octanol-water partition coefficient (kg/L)

When calculating K_{BW} for phytoplankton, V_{NB} is replaced by the NLOC-octanol proportionality constant (GAMMA), as this constant GAMMA affects partitioning between water and NLOC (see Section 2.4.2).

In order to estimate the parameters k_1 and k_2 , Arnot and Gobas relied on the following set of sub-models (Arnot and Gobas 2004).

The gill uptake rate constant (k_1) describes the rate at which chemicals are absorbed from water across the membranes of the gills and skin. It is considered a function of the ventilation rate (G_v) and the diffusion rate across the surface, as shown in Equations 4 and 5.

$$k_1 = \frac{E_W \times G_v}{W_B}$$

Equation 4

$$G_{V} = \frac{1,400 \times W_{B}^{0.65}}{C_{OX}}$$

Equation 5

Where:

 k_1 = clearance rate constant for water ventilated by organism (L/kg × day)

E_W = chemical uptake efficiency across the gills as a percentage (%)

 G_v = ventilation rate (L/day)

LPRSA Bioaccumulation Model Calibration Report – Appendix B

 W_B = weight of the organism (kg)

 C_{ox} = dissolved oxygen concentration (mg O_2/L)

The available DO data from the LPRSA (Windward [in prep]) were used to develop a site-specific relationship between C_{ox} as a fraction of saturated dissolved oxygen concentration (DO_{sat}) and water temperature (T_w) (Equation 6).

$$\frac{C_{ox}}{DO_{sat}} = -0.24T_{w} + 14.04$$
 Equation 6

Arnot and Gobas (2004) proposed a different method of calculating the gill uptake rate (k_1) for algae and macrophytes. Instead of the equation presented above (Equation 6), the following relationship was recommended (Equation 7).

$$k_1 = \frac{1}{\left(A + \frac{B}{K_{ow}}\right)}$$
 Equation 7

Where:

 k_1 = clearance rate constant for water ventilated by organism (L/kg × day)

A = resistance constants of the algae or macrophytes to the uptake of the chemical through aqueous phases (unitless)

B = resistance constants of the algae or macrophytes to the uptake of the chemical through organic phases (unitless)

K_{OW} = chemical-specific octanol-water partition coefficient (kg/L)

Based on empirical data described more fully in Arnot and Gobas (2004), default values of 6.0×10^{-5} and 5.5 were selected for constants A and B, respectively.

An additional parameter has been introduced to account for the ventilation of particulates by carp during feeding (as discussed in Section 3.3.1 of the main report). This chemical-specific parameter, called the particulate ventilation constant (CPV), accounts for increased exposure to chemicals in sediment and particulates via the gill ventilation that occurs as a result of carp feeding habits (Section 3.1.4 of the calibration report). This process is not accounted for mechanistically in the bioaccumulation model, and thus CPV acts as a multiplier on chemical intake via respiration to account for the absence of this mechanism (Equation 8).

Ventilation Uptake =
$$CPV \times (k_1 \times (m_0 \times C_{WD,0} + m_p \times C_{WD,P}))$$
 Equation 8

Where:

CPV = particulate ventilation constant (unitless)

 k_1 = clearance rate constant for water ventilated by organism (L/kg×day) m_0 = fraction of respiratory ventilation involving overlying water (unitless) $C_{WD,O}$ = total bioavailable chemical concentration in overlying water (g/L)

m_p = fraction of respiratory ventilation involving sediment-associated porewater

(unitiess)

C_{WD,P} = total freely dissolved chemical concentration in sediment-associated

porewater (g/L)

The gill elimination rate constant, k_2 describes the rate at which chemicals are removed from the organism across the gill membrane. Closely related to k_1 , inasmuch as both constants are sensitive to ventilation rate and permeability across the surface of the gill membrane, k_2 is defined in Equation 9.

$$k_2 = \frac{k_1}{K_{BW}}$$
 Equation 9

Where:

 k_2 = gill and skin elimination rate constant (1/day)

 k_1 = clearance rate constant for water ventilated by organism (L/kg × day)

K_{BW} = organism-specific water partitioning coefficient (unitless)

Because bioaccumulation is defined by the ratio of k_1 to k_2 , any errors that may occur in the selection of appropriate G_V and E_W values will be canceled out in the model. Therefore, the model is relatively insensitive to parameterization errors in G_V and E_W , which makes it possible to represent the ventilation rate and chemical uptake efficiency across the gill membrane with a single equation for a variety of species.

2.3.3 Direct contact through dietary exposure - phase partitioning

In addition to direct exposure to chemicals in the water, organisms may be exposed to chemicals present in ingested prey items.

The dietary uptake rate constant, k_D , defines the rate at which chemicals are removed from the gastrointestinal tract of an organism and absorbed into tissue. The dietary uptake rate constant is defined in Equation 10.

$$k_{D} = \frac{E_{D} \times G_{D}}{W_{B}}$$
 Equation 10

Where:

k_D = clearance rate constant via ingestion of food and water (kg/kg×day)

E_D = dietary chemical transfer efficiency (unitless)

 G_D = feeding rate (kg/day)

 W_B = wet weight of organism (kg)

 E_D has been shown to rely heavily on the K_{OW} value of the chemical being absorbed, and therefore was defined by Arnot and Gobas (2004) based on a two-phase lipid-water resistance model (Equation 11).

$$E_{D} = (3.0 \times 10^{-7} \times K_{OW} + 2.0)^{-1}$$
 Equation 11

The first and last terms in this equation are defined as dietary uptake constants A and B, respectively (EDA and EDB).

Feeding rates are best defined using site-specific empirical data, if such data are available. However, if such information does not exist for a particular site being

modeled, feeding rate G_D may be defined as the following for fish, zooplankton, and aquatic invertebrate species (Equation 12).

$$G_{D} = (0.022 \times W_{B}^{0.85}) \times exp^{0.06 \times T}$$
Equation 12

Where:

 G_D = feeding rate (kg /day) W_B = wet weight of organism (kg) T = water temperature (°C)

Chemicals may also be eliminated from an organism through fecal egestion, which is defined by the fecal elimination rate constant k_E (Equation 13).

$$k_{E} = G_{F} \times E_{D} \times \frac{K_{GB}}{W_{B}}$$
 Equation 13

Where:

 k_E = fecal elimination rate constant (1/day)

G_F = fecal egestion rate (kg feces/kg organism x day) E_D = dietary chemical transfer efficiency (unitless)

K_{GB} = Partition coefficient of the chemical between gut and organism (unitless)

 W_B = wet weight of organism (kg)

The fecal egestion rate G_F is a function of how digestibility of the various components of the diet (Equation 14).

$$G_{F} = \{ \left[(1 - \epsilon_{L}) \times V_{LD} \right] + \left[(1 - \epsilon_{N}) \times V_{ND} \right] + \left[(1 - \epsilon_{P}) \times V_{PD} \right] + \left[(1 - \epsilon_{W}) \times V_{WD} \right] \} \times G_{D}$$
 Equation 14

Where:

 $\begin{array}{lll} G_F & = & \text{fecal egestion rate (kg feces/kg organism x d)} \\ \epsilon_L & = & \text{dietary assimilation efficiencies of lipid (unitless)} \\ \epsilon_N & = & \text{dietary assimilation efficiencies of NLOM (unitless)} \\ \epsilon_P & = & \text{dietary assimilation efficiencies of NLOC (unitless)} \\ \epsilon_W & = & \text{dietary assimilation efficiencies of water (unitless)} \end{array}$

 V_{LD} = lipid fraction of the diet (unitless) V_{ND} = NLOM fraction of the diet (unitless) V_{PD} = NLOC fraction of the diet (unitless) V_{WD} = water fraction of the diet (unitless)

 G_D = feeding rate (kg /day?)

The partitioning coefficient between the gut contents of the organism and its tissue is estimated as shown in Equation 15.

$$K_{GB} = \frac{\left(\left[V_{LG} \times K_{OW}\right] + \left[V_{NG} \times \beta\right] + \left[V_{PG} \times \gamma \times K_{OW}\right] + V_{WG}\right)}{\left(\left[V_{LB} \times K_{OW}\right] + \left[V_{NB} \times \beta \times K_{OW}\right] + V_{WB}\right)}$$
Equation 15

Where:

viii

K_{GB} = Partition coefficient of the chemical between gut and organism (unitless)
 K_{OW} = chemical-specific octanol-water partition coefficient (kg/L)

 $\begin{array}{lll} V_{LG} & = & lipid \ fraction \ of \ the \ gut \ (unitless) \\ V_{NG} & = & NLOM \ fraction \ of \ the \ gut \ (unitless) \\ V_{PG} & = & NLOC \ fraction \ of \ the \ gut \ (unitless) \\ V_{WG} & = & water \ fraction \ of \ the \ gut \ (unitless) \end{array}$

 β (BETA) = NLOM-octanol proportionality constant (unitless) γ (GAMMA) = NLOC-octanol proportionality constant (unitless)

 V_{LB} = lipid fraction of the organism (unitless) V_{NB} = NLOM fraction of the organism (unitless) V_{WB} = water fraction of the organism (unitless)

These gut fractions are estimated as shown in Equation 16 through 19; collectively, they add up to a number approaching 1 and are dependent upon the assimilation efficiency fraction for each component. (Arnot and Gobas 2004). The fractions of lipid, NLOM, NLOC, and water present in the tissue of the organism (V_{LB} , V_{NB} , V_{PG} , and V_{WB} , respectively) are based on organism-specific information:

$$V_{LG} = \frac{\left(\left[1 - \epsilon_{L}\right] \times V_{LD}\right)}{\left(1 - \epsilon_{L} \times V_{LD}\right) + \left(1 - \epsilon_{N} \times V_{ND}\right) + \left(\left[1 - \epsilon_{W}\right] \times V_{WD}\right)}$$
Equation 16

$$V_{NG} = \frac{\left(\left[1 - \epsilon_{N}\right] \times V_{LD}\right)}{\left(\left[1 - \epsilon_{L}\right] \times V_{LD}\right) + \left(\left[1 - \epsilon_{N}\right] \times V_{ND}\right) + \left(\left[1 - \epsilon_{W}\right] \times V_{WD}\right)}$$
Equation 17

$$V_{PG} = \frac{\left(\!\left[\!1 - \epsilon_{P}\right]\!\times V_{LD}\right)}{\left(\!\left[\!1 - \epsilon_{L}\right]\!\times V_{LD}\right) + \left(\!\left[\!1 - \epsilon_{N}\right]\!\times V_{ND}\right) + \left(\!\left[\!1 - \epsilon_{P}\right]\!\times V_{PD}\right) + \left(\!\left[\!1 - \epsilon_{W}\right]\!\times V_{WD}\right)}$$
 Equation 18

$$V_{WG} = \frac{\left(\left[1 - \epsilon_{L} \right] \times V_{WD} \right)}{\left(\left[1 - \epsilon_{L} \right] \times V_{LD} \right) + \left(\left[1 - \epsilon_{N} \right] \times V_{ND} \right) + \left(\left[1 - \epsilon_{W} \right] \times V_{WD} \right)}$$
 Equation 19

Where:

 V_{IG} = lipid fraction of the gut (unitless) V_{NG} = NLOM fraction of the gut (unitless) V_{PG} NLOC fraction of the gut (unitless) V_{WG} = water fraction of the gut (unitless) = lipid fraction of the diet (unitless) V_{ID} V_{ND} = NLOM fraction of the diet (unitless) V_{PD} = NLOC fraction of the diet (unitless) = water fraction of the diet (unitless) V_{WD}

 ε_L = dietary assimilation efficiencies of lipid (unitless) ε_N = dietary assimilation efficiencies of NLOM (unitless) ε_P = dietary assimilation efficiencies of NLOC (unitless) ε_W = dietary assimilation efficiencies of water (unitless)

In the model, Z_{water} is used to determine chemical uptake from water in the gut (V_{WG}), while Z_{lipid} is used to determine chemical uptake from lipid matter in the gut (V_{LG}),

ix

non-lipid organic matter in the gut (V_{NG}) , and non-lipid organic carbon in the gut (V_{PG}) . These parameters are used in conjunction with the above equations to describe the chemical flux between an organism's tissue and the material in its gut (see Section 2.4.3 for the full equation).

2.3.4 Growth

Growth rate information is available for a wide range of species. However, growth rates may vary among and within species according to a number of factors, including, but not limited to, organism size and age, environmental temperature, and availability and quality of food (Arnot and Gobas 2004). The recommended approximation for growth rate in the absence of empirical data is (Arnot and Gobas 2004; Thomann et al. 1992) are as follows:

For temperatures around 10°C, Equation 20 is used.

$$k_{\rm G} = 0.000502 \times W_{\rm B}^{-0.2}$$

Equation 20

For temperatures around 25°C, Equation 21 is used.

$$k_G = 0.00251 \times W_B^{-0.2}$$

Equation 21

Where:

 k_G = growth rate constant (1/day) W_B = wet weight of organism (kg)

The growth rate in the model is temperature dependent. Equation 20 is used when the temperature is less than 17.5°C, and Equation 21 is used when the temperature exceeds 17.5°C.

2.3.5 Metabolic biotransformation rate constant

Chemical compounds may be eliminated from an organism through metabolic biotransformation, during which the parent compound undergoes structural changes to become a chemical derivative or metabolite of the original compound. The metabolic process is species- and chemical-specific, and the inclusion of metabolic biotransformation in the mechanistic model is further discussed in Section 3.3.1 of the main report and in Appendix G.

2.4 Species-Specific Calculations

Many of the equations presented in Arnot and Gobas (2004) were included in the version of the model used in this LPRSA bioaccumulation modeling. Excerpts of the VBA code used to run the LPRSA mechanistic model are presented below, with definitions of each input parameter used and examples of how those parameters fit into the equations required to run the model. The parameter abbreviations used by Arnot and Gobas (2004) were altered slightly for convenience in the version presented here; however, the functionality of the model was preserved.

The entire VBA code is presented in Section 3; because of the iterative nature of the model, a representative organism from each of the two main types of organisms

LPRSA Bioaccumulation Model Calibration Report – Appendix B

modeled (i.e., plankton [Section 2.4.1] and small forage fish [Section 2.4.2]) has been selected for a more detailed description. Section 3, the complete VBA code, presents the exact coding information used for the other organisms.

The identifying numbers used to represent species in the mechanistic model are presented in Table 1.

Table 1. Identifying numbers for species used in model code

ldentifying Number	FWM Compartment
2	phytoplankton/algae
3	zooplankton
4	benthic invertebrate DEPs
5	benthic invertebrate DETs
6	benthic invertebrate C/Os
7	small filter feeding fish
8	small forage fish
9	carp
10	catfish
11	white perch
12	American eel
13	bass
14	blue crab

C/O - carnivore/omnivore

DEP - deposit feeder

DET -detritivore

FWM - food web model

This numbering methodology allowed for the identification of species-specific values within the code without having to write out the entire species name as it accompanied each of the individual parameters.

2.4.1 Example VBA code for phytoplankton/algae

This section presents the VBA code for the phytoplankton/algae model compartment. Definition of terms are provided in Table 2.

VLB2 = empirical value defined by model user

VWB2 = empirical value defined by model user

VNB2 = 0

VPB2 = empirical value defined by model user

UA = empirical value defined by model user

UB = empirical value defined by model user

K12 = 1 / (UA + (UB / KOW))

KPW2 = (VLB2 * KOW) + (VPB2 * GAMMA * KOW) + VWB2

LPRSA Bioaccumulation Model Calibration Report – Appendix B

K22 = K12 / KPW2 KG2 = Worksheets("Output").Cells(54, 5) FPW2 = Worksheets("Output").Cells(50, 5) CB2 = (CWB * K12 * (1 - FPW2)) / (K22 + KG2)

Table 2. Definition of equation variables for phytoplankton/algae

Acronym	Definition
VLB2	lipid fraction of organism (unitless)
VNB2	non-lipid organic matter fraction of organism (unitless)
VPB2	non-lipid organic carbon fraction of organism (unitless)
VWB2	water fraction of organism (unitless)
GAMMA	non-lipid organic carbon (NLOC) proportionality constant (unitless)
K12	gill uptake rate constant (d ⁻¹)
UA	uptake constant A (unitless)
UB	uptake constant B (unitless)
KOW	chemical-specific octanol-water partition coefficient (kg/L)
KPW2	organism-water partition coefficient (unitless)
K22	gill and skin elimination rate constant (d ⁻¹)
KG2	growth rate constant (d ⁻¹)
KM2	metabolic biotransformation rate constant (d ⁻¹)
FPW2	fraction of sediment porewater ventilated by organism (unitless)
CWB	biologically available concentration of chemical in water (ng/g)
CB2	predicted tissue concentration in organism (ng/g)

2.4.2 Example VBA code for small forage fish

This section presents the VBA code for the small forage fish model compartment. Definition of terms are provided in Table 3.

```
WB8 = empirical value defined by model user
VLB8 = empirical value defined by model user
VWB8 = empirical value defined by model user
VNB8 = empirical value defined by model user
VPB8 = empirical value defined by model user
WBL8 = WB8 * VLB8
QW8 = 88.3 * WB8 ^ 0.6
QL8 = QW8 * 0.01
    'Temperature dependent growth
If TW < 17.5 Then
    KG8 = 0.000502 * WB8 ^ -0.2
Else
    KG8 = 0.00251 * WB8 ^ -0.2
End If
GV8 = (1400 * (WB8 ^ 0.65)) / COX
GD8 = 0.022 * WB8 ^ 0.85 * Exp(0.06 * TW)
```



```
DF81 = dietary fraction of prey item 1 (sediment) for organism 8 (small forage fish)
DF8p = dietary fraction of prey item p (near-bottom particulates) for organism 8 (small forage fish)
DF82 = dietary fraction of prey item 2 (phytoplankton) for organism 8 (small forage fish)
DF83 = dietary fraction of prey item 3 (zooplankton) for organism 8 (small forage fish)
DF84 = dietary fraction of prey item 4 (deposit feeders) for organism 8 (small forage fish)
DF85 = dietary fraction of prey item 5 (detritivores) for organism 8 (small forage fish)
DF86 = dietary fraction of prey item 6 (benthic invertebrate - carnivore/omnivores) for organism 8 (small forage fish)
DF87 = dietary fraction of prey item 7 (filter feeding fish) for organism 8 (small forage fish)
eL8 = empirical value defined by model user
eP8 = empirical value defined by model user
eN8 = empirical value defined by model user
eW8 = empirical value defined by model user
FPW8 = empirical value defined by model user
Food8A = DF81 * VLBsed + DF8p * VLBpart + DF82 * VLB2 + DF83 * VLB3 + DF84 * VLB4 + DF85 * VLB5 + DF86
       * VLB6 + DF87 * VLB7
Food8B = DF81 * VNBsed + DF8p * VNBpart + DF82 * VNB2 + DF83 * VNB3 + DF84 * VNB4 + DF85 * VNB5 +
       DF86 * VNB6 + DF87 * VNB7
Food8C = DF81 * VWBsed + DF8p * VWBpart + DF82 * VWB2 + DF83 * VWB3 + DF84 * VWB4 + DF85 * VWB5 +
       DF86 * VWB6 + DF87 * VWB7
Food8D = DF81 * VPBsed + DF8p * VPBpart + DF82 * VPB2 + DF83 * VPB3 + DF84 * VPB4 + DF85 * VPB5 +
       DF86 * VPB6 + DF87 * VPB7
Food8E = DF81 * CST + DF8p * CFL + DF82 * CB2 + DF83 * CB3 + DF84 * CB4 + DF85 * CB5 + DF86 * CB6 +
       DF87 * CB7
GF8 = (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) * Food8D)) * GD8
VLG8 = ((1 - eL8) * Food8A) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) *
       Food8D))
VNG8 = ((1 - eN8) * Food8B) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) *
       Food8D))
VWG8 = ((1 - eW8) * Food8C) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) * Food8C) + ((1 - eV8) *
       Food8D))
VPG8 = ((1 - eP8) * Food8D) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) *
       Food8D))
ED8 = 1 / (EDA * KOW + EDB)
KD8 = ED8 * GD8 / WB8
EWW8 = 1 / (1.85 + (155 / KOW))
K18 = EWW8 * GV8 / WB8
KPW8 = (VLB8 * KOW) + (VNB8 * BETA * KOW) + VWB8
K28 = K18 / KPW8
Zorg8 = (VLB8 * Zlipid) + (VNB8 * BETA * Zlipid) + (VWB8 * Zwater)
Zgut8 = VLG8 * Zlipid + VNG8 * BETA * Zlipid + VPG8 * GAMMA * Zlipid + VWG8 * Zwater
KGB8 = Zgut8 / Zorg8
KE8 = KGB8 / WB8 * ED8 * GF8
CB8 = (CWB * K18 * (1 - FPW8) + CSD * K18 * FPW8 + KD8 * Food8E) / (K28 + KE8 + KG8 + KM8)
```

Table 3. Definition of equation variables for small forage fish

Acronym	Definition
VLB8	lipid fraction of organism (unitless)
VNB8	non-lipid organic matter fraction of organism (unitless)

xiii

VPB8	non linid arrania asahan frastian of arraniam (unitless)
	non-lipid organic carbon fraction of organism (unitless)
VWB8	water fraction of organism (unitless)
WB8	wet weight of organism (kg)
WBL8	organism lipid weight (kg)
QW8	aqueous transport parameter for organism (d ⁻¹)
QL8	lipid transport parameter for organism (d ⁻¹)
GD8	food ingestion rate (kg food/day)
TW	mean water temperature (°C)
KG8	growth rate constant (d ⁻¹)
GV8	gill ventilation rate (L/day)
COX	dissolved oxygen content (mg/L)
DF	fraction of other organism in fish diet (unitless)
FoodA8	intermediate calculation term (unitless)
FoodB8	intermediate calculation term (unitless)
FoodC8	intermediate calculation term (unitless)
FoodD8	intermediate calculation term (unitless)
FoodE8	intermediate calculation term (unitless)
VLBsed	lipid fraction of organism (unitless); always equal to 0
VNBsed	NLOM content of sediment; always equal to 0
VPBsed	NLOC content of sediment (unitless)
VWBsed	water content of sediment (unitless)
GF8	fecal egestion rate (kg food/day)
eL8	lipid dietary absorption efficiency for organism (unitless)
eN8	NLOM dietary absorption efficiency for organism (unitless)
eP8	NLOC dietary absorption efficiency for organism (unitless)
eW8	water dietary absorption efficiency for organism (unitless)
VLG8	lipid fraction in organism gut (unitless)
VNG8	NLOM fraction in organism gut (unitless)
VPG8	NLOC fraction in organism gut (unitless)
VWG8	water fraction in organism gut (unitless)
ED8	intestinal tract chemical transfer efficiency (unitless)
KD8	dietary uptake rate constant (d ⁻¹)
EDA	dietary chemical transfer constant a
EDB	dietary chemical transfer constant b
K18	gill uptake rate constant (d ⁻¹)
EWW8	gill chemical transfer efficiency (unitless)
KOW	chemical-specific octanol-water partition coefficient (kg/L)
KPW8	organism-water partition coefficient (unitless)
K28	gill and skin elimination rate constant (d ⁻¹)
BETA	NLOM proportionality constant (unitless)
GAMMA	NLOC proportionality constant (unitless)
Zorg8	organism fugacity capacity constant (mol m-3 Pa-1)
Zgut8	organism intestinal tract fugacity capacity constant (mol m-3 Pa-1)
Zlipid	lipid fugacity capacity constant
	and the contraction of the contr

xiv

KGB8	gut-organism partition coefficient (unitless)
KE8	fecal egestion rate constant (d ⁻¹)
KM8	metabolic biotransformation rate constant (d-1)
FPW8	fraction of sediment porewater ventilated (unitless)
CWB	biologically available concentration of chemical in water (ng/g)
CST	total concentration of chemical in sediment (ng/g)
CFL	total concentration of chemical in near-bottom particulates (ng/g)
CSD	concentration of chemical in sediment porewater (ng/g)
CB8	tissue concentration in 8 th organism (ng/g)

χV

3 Complete VBA Model Code

Option Explicit

Option Base 1

'Define variables

Dim DT As Single

Dim KOW As Single

Dim BETA As Single

Dim GAMMA As Single

Dim EDA As Single

Dim EDB As Single

Dim TW As Single

Dim CPW As Single

Dim CWB As Single

Dim CST As Single

Dim CSD As Single

Dim CPART As Single

Dim CPART_DET As Single

Dim CFL As Single

Dim FPW2 As Single

Dim FPW3 As Single

Dim FPW4 As Single

Dim FPW5 As Single

Dim FPW6 As Single

Dim FPW7 As Single

Dim FPW8 As Single

Dim FPW9 As Single

Dim Zwater As Single

Dim Zlipid As Single

Dim VLBsed As Single

Dim VNBsed As Single

Dim VWBsed As Single

Dim VPBsed As Single

Dim VLBpart As Single Dim VNBpart As Single

Dim VWBpart As Single

Dim VPBpart As Single

Diffi VI bpart As Single

Dim VLBpart_DET As Single

Dim VNBpart_DET As Single

Dim VWBpart_DET As Single

Dim VPBpart_DET As Single

Dim COX As Single

Dim H As Single

Dim CWT As Single

Dim XPOC As Single

LPRSA Bioaccumulation Model Calibration Report – Appendix B

DRAFT

xvi

Dim APOC As Single

Dim XDOC As Single

Dim ADOC As Single

Dim BSF As Single

Dim chemconstant As Single

Dim OCSS As Single

Dim OCPart As Single

Dim CAC As Single

Dim CAC_DET As Single

Dim DOconstant As Single

Dim TW_mf As Single

Dim CWB_mf As Single

Dim CSD_mf As Single

Dim CST_mf As Single

Dim CPART_mf As Single

Dim CPART_DET_mf As Single

Dim CFL_mf As Single

Dim CPW_mf As Single

Dim VNBsed_mf As Single

Dim VLBsed_mf As Single

Dim VWBsed_mf As Single

Dim VPBsed_mf As Single

Dim OCPART_mf As Single

Dim VNBpart_mf As Single

Dim VLBpart_mf As Single

Dim VWBpart_mf As Single

Dim VPBpart_mf As Single

Dim VNBpart_DET_mf As Single

Dim VLBpart_DET_mf As Single

Dim VWBpart_DET_mf As Single

Dim VPBpart_DET_mf As Single

Dim COX_mf As Single

'----

Dim WB2 As Single

Dim VLB2 As Single

Dim VNB2 As Single

Dim VWB2 As Single

Dim VPB2 As Single

Dim UA As Single

Dim UB As Single

Dim K12 As Single

Dim K22 As Single

Dim KPW2 As Single

Dim KG2 As Single

Dim CB2 As Single

¹___

xvii

Dim WB3 As Single

Dim VLB3 As Single

Dim VNB3 As Single

Dim VWB3 As Single

Dim VPB3 As Single

Dim WBL3 As Single

Dim KM3 As Single

Dim QW3 As Single

Dim QL3 As Single

Dim GD3 As Single

Dim KG3 As Single

Dim GV3 As Single

Dim DF32 As Single

Dim eL3 As Single

Dim eN3 As Single

Dim eW3 As Single

Dim eP3 As Single

Dim GF3 As Single

Dim VLG3 As Single

Dim VNG3 As Single

Dim VWG3 As Single

Dim VPG3 As Single

Dim ED3 As Single

Dim KD3 As Single

Dim EWW3 As Single

Dim K13 As Single

Dim KPW3 As Single

Dim K23 As Single

Dim KE3 As Single

Dim Food3A As Single

Dim Food3B As Single

Dim Food3C As Single

Dim Food3D As Single

Dim Zorg3 As Single

Dim Zgut3 As Single

Dim KGB3 As Single

Dim CB3 As Single

Dim WB4 As Single

Dim VLB4 As Single

Dim VNB4 As Single

Dim VWB4 As Single

Dim VPB4 As Single

Dim WBL4 As Single

Dim KM4 As Single

Dim QW4 As Single Dim QL4 As Single

Dim GD4 As Single

Dim KG4 As Single

Dim GV4 As Single

Dim DF41 As Single

Dim DF4p As Single

Dim DF42 As Single

Dim DF43 As Single

Dim eL4 As Single

Dim eN4 As Single

Dim eW4 As Single

Dim eP4 As Single

Dim GF4 As Single

Dim VLG4 As Single

Dim VNG4 As Single

Dim VWG4 As Single

Dim VPG4 As Single

Dim ED4 As Single

Dim KD4 As Single

Dim EWW4 As Single

Dim K14 As Single

Dim KPW4 As Single

Dim K24 As Single

Dim KE4 As Single

Dim SCV4 As Single

Dim Food4A As Single

Dim Food4B As Single

Dim Food4C As Single

Dim Food4D As Single

Dim Food4E As Single

Dim Zorg4 As Single

Dim Zgut4 As Single

Dim KGB4 As Single

Dim CB4 As Single

Dim WB5 As Single

Dim VLB5 As Single

Dim VNB5 As Single

Dim VWB5 As Single

Dim VPB5 As Single Dim WBL5 As Single

Dim KM5 As Single

Dim QW5 As Single

Dim QL5 As Single

Dim GD5 As Single

Dim KG5 As Single

Dim GV5 As Single

Dim DF51 As Single Dim DF5p As Single

Dim DF52 As Single

xix

Dim DF53 As Single

Dim DF54 As Single

Dim eL5 As Single

Dim eN5 As Single

Dim eW5 As Single

Dim eP5 As Single

Dim GF5 As Single

Dim VLG5 As Single

Dim VNG5 As Single

Dim VWG5 As Single

Dim VPG5 As Single

Dim ED5 As Single

Dim KD5 As Single

Dim EWW5 As Single

Dim K15 As Single

Dim KPW5 As Single

Dim K25 As Single

Dim KE5 As Single

Dim Food5A As Single

Dim Food5B As Single

Dim Food5C As Single

Dim Food5D As Single

Dim Food5E As Single

Dim Zorg5 As Single

Dim Zgut5 As Single

Dim KGB5 As Single

Dim CB5 As Single

Dim WB6 As Single

Dim VLB6 As Single

Dim VNB6 As Single

Dim VWB6 As Single

Dim VPB6 As Single

Dim WBL6 As Single Dim KM6 As Single

Dim QW6 As Single

Dim QL6 As Single

Dim GD6 As Single

Dim KG6 As Single

Dim GV6 As Single

Dim DF61 As Single

Dim DF6p As Single

Dim DF62 As Single

Dim DF63 As Single

Dim DF64 As Single Dim DF65 As Single

Dim eL6 As Single

Dim eN6 As Single

ХX

Dim eW6 As Single

Dim eP6 As Single

Dim GF6 As Single

Dim VLG6 As Single

Dim VNG6 As Single

Dim VWG6 As Single

Dim VPG6 As Single

Dim ED6 As Single

Dim KD6 As Single

Dim EWW6 As Single

Dim K16 As Single

Dim KPW6 As Single

Dim K26 As Single

Dim KE6 As Single

Dim Food6A As Single

Dim Food6B As Single

Dim Food6C As Single

Dim Food6D As Single

Dim Food6E As Single

Dim Zorg6 As Single

Dim Zgut6 As Single

Dim KGB6 As Single

Dim CB6 As Single

Dim WB7 As Single

Dim VLB7 As Single

Dim VNB7 As Single

Dim VWB7 As Single

Dim VPB7 As Single

Dim WBL7 As Single

Dim KM7 As Single

Dim QW7 As Single

Dim QL7 As Single

Dim GD7 As Single

Dim KG7 As Single

Dim GV7 As Single

Dim DF71 As Single

Dim DF7p As Single

Dim DF72 As Single

Dim DF73 As Single Dim DF74 As Single

D: DE7E A O: 1

Dim DF75 As Single

Dim DF76 As Single

Dim eL7 As Single

Dim eN7 As Single

Dim eW7 As Single

Dim eP7 As Single

Dim GF7 As Single

xxi

Dim VLG7 As Single

Dim VNG7 As Single

Dim VWG7 As Single

Dim VPG7 As Single

Dim ED7 As Single

Dim KD7 As Single

Dim EWW7 As Single

Dim K17 As Single

Dim KPW7 As Single

Dim K27 As Single

Dim KE7 As Single

Dim Food7A As Single

Dim Food7B As Single

Dim Food7C As Single

Dim Food7D As Single

Dim Food7E As Single

Dim Zorg7 As Single

Dim Zgut7 As Single

Dim KGB7 As Single

Dim CB7 As Single

Dim WB8 As Single

Dim VLB8 As Single

Dim VNB8 As Single

Dim VWB8 As Single

Dim VPB8 As Single

Dim WBL8 As Single

Dim KM8 As Single

Dim QW8 As Single

Dim QL8 As Single

Dim GD8 As Single

Dim KG8 As Single

Dim GV8 As Single

Dim DF81 As Single

Dim DF8p As Single

Dim DF82 As Single

Dim DF83 As Single

Dim DF84 As Single Dim DF85 As Single

Dim DF86 As Single

Dim DF87 As Single

Dim eL8 As Single

Dim eN8 As Single

Dim eW8 As Single

Dim eP8 As Single

Dim GF8 As Single

Dim VLG8 As Single

Dim VNG8 As Single

xxii

Dim VWG8 As Single

Dim VPG8 As Single

Dim ED8 As Single

Dim KD8 As Single

Dim EWW8 As Single

Dim K18 As Single

Dim KPW8 As Single

Dim K28 As Single

Dim KE8 As Single

Dim Food8A As Single

Dim Food8B As Single

Dim Food8C As Single

Dim Food8D As Single

Dim Food8E As Single

Dim Zorg8 As Single

Dim Zgut8 As Single

Dim KGB8 As Single

Dim CB8 As Single

'____

Dim WB9 As Single

Dim VLB9 As Single

Dim VNB9 As Single

Dim VWB9 As Single

Dim VPB9 As Single

Dim WBL9 As Single

Dim KM9 As Single

Dim QW9 As Single

Dim QL9 As Single

Dim GD9 As Single

Dim KG9 As Single

Dim GV9 As Single

Dim DF91 As Single Dim DF9p As Single

Dim DF92 As Single

Dim DF93 As Single

Dim DF94 As Single

Dim DF95 As Single

Dim DF96 As Single

Dim DF97 As Single

Dim DF98 As Single

Dim eL9 As Single

Dim eN9 As Single

Dim eW9 As Single

Dim eP9 As Single

Dim GF9 As Single

Dim VLG9 As Single

Dim VNG9 As Single

Dim VWG9 As Single

Dim VPG9 As Single

Dim ED9 As Single

Dim KD9 As Single

Dim EWW9 As Single

Dim K19 As Single

Dim KPW9 As Single

Dim K29 As Single

Dim KE9 As Single

Dim Food9A As Single

Dim Food9B As Single

Dim Food9C As Single

Dim Food9D As Single

Dim Food9E As Single

Dim Zorg9 As Single

Dim Zgut9 As Single

Dim KGB9 As Single

Dim CB9 As Single

Dim WB10 As Single

Dim VLB10 As Single

Dim VNB10 As Single

Dim VWB10 As Single

Dim VPB10 As Single

Dim WBL10 As Single

Dim KM10 As Single

Dim QW10 As Single

Dim QL10 As Single

Dim GD10 As Single

Dim KG10 As Single

Dim GV10 As Single

Dim DF101 As Single

Dim DF10p As Single

Dim DF102 As Single

Dim DF103 As Single Dim DF104 As Single

Dim DF105 As Single

Dim DF106 As Single

Dim DF107 As Single

Dim DF108 As Single

Dim DF109 As Single

Dim eL10 As Single

Dim eN10 As Single

Dim eW10 As Single

Dim eP10 As Single

Dim GF10 As Single

Dim VLG10 As Single

Dim VNG10 As Single

Dim VWG10 As Single

Dim VPG10 As Single

Dim ED10 As Single

Dim KD10 As Single

Dim EWW10 As Single

Dim K110 As Single

Dim KPW10 As Single

Dim K210 As Single

Dim KE10 As Single

Dim FPW10 As Single

Dim Food10A As Single

Dim Food10B As Single

Dim Food10C As Single

Dim Food10D As Single

Dim Food10E As Single

Dim Zorg10 As Single

Dim Zgut10 As Single

Dim KGB10 As Single

Dim CB10 As Single

·____

Dim WB11 As Single

Dim VLB11 As Single

Dim VNB11 As Single

Dim VWB11 As Single

Dim VPB11 As Single

Dim WBL11 As Single

Dim KM11 As Single

Dim QW11 As Single

Dim QL11 As Single

Dim GD11 As Single

Dim KG11 As Single

Dim GV11 As Single

Dim DF111 As Single

Dim DF11p As Single

Dim DF112 As Single

Dim DF113 As Single

Dim DF114 As Single

Dim DF115 As Single

Dim DF116 As Single

Dim DF117 As Single

Dim DF118 As Single

Dim DF119 As Single

Dim DF1110 As Single

Dim eL11 As Single

Dim eN11 As Single

Dim eW11 As Single

Dim eP11 As Single

Dim GF11 As Single

Dim VLG11 As Single

XXV

Dim VNG11 As Single

Dim VWG11 As Single

Dim VPG11 As Single

Dim ED11 As Single

Dim KD11 As Single

Dim EWW11 As Single

Dim K111 As Single

Dim KPW11 As Single

Dim K211 As Single

Dim KE11 As Single

Dim FPW11 As Single

Dim Food11A As Single

Dim Food11B As Single

Dim Food11C As Single

Dim Food11D As Single

Dim Food11E As Single

Dim Zorg11 As Single

Dim Zgut11 As Single

Dim KGB11 As Single

Dim CB11 As Single

·___

Dim WB12 As Single

Dim VLB12 As Single

Dim VNB12 As Single

Dim VWB12 As Single

Dim VPB12 As Single

Dim WBL12 As Single

Dim KM12 As Single

Dim QW12 As Single

Dim QL12 As Single

Dim GD12 As Single

Dim KG12 As Single

Dim GV12 As Single

Dim DF121 As Single

Dim DF12p As Single

Dim DF122 As Single Dim DF123 As Single

Dim DF124 As Single

Dim DF125 As Single

Dim DF126 As Single

Dim DF127 As Single

Dim DF128 As Single

Dim DF129 As Single

Dim DF1210 As Single

Dim DF1211 As Single

Dim eL12 As Single

Dim eN12 As Single

Dim eW12 As Single

Dim eP12 As Single

Dim GF12 As Single

Dim VLG12 As Single

Dim VNG12 As Single

Dim VWG12 As Single

Dim VPG12 As Single

Dim ED12 As Single

Dim KD12 As Single

Dim EWW12 As Single

Dim K112 As Single

Dim KPW12 As Single

Dim K212 As Single

Dim KE12 As Single

Dim FPW12 As Single

Dim Food12A As Single

Dim Food12B As Single

Dim Food12C As Single

Dim Food12D As Single

Dim Food12E As Single

Dim Zorg12 As Single

Dim Zgut12 As Single

Dim KGB12 As Single

Dim CB12 As Single

Dim WB13 As Single

Dim VLB13 As Single

Dim VNB13 As Single

Dim VWB13 As Single

Dim VPB13 As Single

Dim WBL13 As Single

Dim KM13 As Single

Dim QW13 As Single

Dim QL13 As Single

Dim GD13 As Single

Dim KG13 As Single

Dim GV13 As Single

Dim DF131 As Single

Dim DF13p As Single

Dim DF132 As Single

Dim DF133 As Single

Dim DF134 As Single

Dim DF135 As Single Dim DF136 As Single

Dim DF137 As Single

Dim DF138 As Single

Dim DF139 As Single

Dim DF1310 As Single

Dim DF1311 As Single

Dim DF1312 As Single

Dim eL13 As Single

Dim eN13 As Single

Dim eW13 As Single

Dim eP13 As Single

Dim GF13 As Single

Dim VLG13 As Single

Dim VNG13 As Single

Dim VWG13 As Single

Dim VPG13 As Single

Dim ED13 As Single

Dim KD13 As Single

Dim EWW13 As Single

Dim K113 As Single

Dim KPW13 As Single

Dim K213 As Single

Dim KE13 As Single

Dim FPW13 As Single

Dim Food13A As Single

Dim Food13B As Single

Dim Food13C As Single

Dim Food13D As Single

Dim Food13E As Single

Dim Zorg13 As Single

Dim Zgut13 As Single

Dim KGB13 As Single

Dim CB13 As Single

Dim WB14 As Single

Dim VLB14 As Single

Dim VNB14 As Single

Dim VWB14 As Single

Dim VPB14 As Single Dim WBL14 As Single

Dim KM14 As Single

Dim QW14 As Single

Dim QL14 As Single

Dim GD14 As Single

Dim KG14 As Single

Dim GV14 As Single

Dim DF141 As Single

Dim DF14p As Single

Dim DF142 As Single Dim DF143 As Single

Dim DF144 As Single

Dim DF145 As Single

Dim DF146 As Single

Dim DF147 As Single

LPRSA Bioaccumulation Model Calibration Report – Appendix B xxviii Dim DF148 As Single

Dim DF149 As Single

Dim DF1410 As Single

Dim DF1411 As Single

Dim DF1412 As Single

Dim DF1413 As Single

Dim eL14 As Single

Dim eN14 As Single

Dim eW14 As Single

Dim eP14 As Single

Dim GF14 As Single

Dim VLG14 As Single

Dim VNG14 As Single

Dim VWG14 As Single

Dim VPG14 As Single

Dim ED14 As Single

Dim KD14 As Single

Dim EWW14 As Single

Dim K114 As Single

Dim KPW14 As Single

Dim K214 As Single

Dim KE14 As Single

Dim FPW14 As Single

Dim Food14A As Single

Dim Food14B As Single

Dim Food14C As Single

Dim Food14D As Single

Dim Food14E As Single

Dim Zorg14 As Single

Dim Zgut14 As Single

Dim KGB14 As Single

Dim CB14 As Single

'Mudflat variables

Dim CB2_mf As Single

Dim GD3_mf As Single

Dim GF3_mf As Single

Dim KD3_mf As Single

Dim KE3_mf As Single Dim CB3 mf As Single

Dim GD4 mf As Single

Dim Food4B_mf As Single

Dim Food4C_mf As Single

Dim Food4D_mf As Single

Dim Food4E_mf As Single

Dim GF4 mf As Single

Dim VLG4_mf As Single

LPRSA Bioaccumulation Model Calibration Report – Appendix B xxix Dim VPG4_mf As Single

Dim VNG4_mf As Single

Dim VWG4_mf As Single

Dim KD4_mf As Single

Dim Zgut4_mf As Single

Dim KGB4_mf As Single

Dim KE4_mf As Single

Dim CB4_mf As Single

Dim GD5_mf As Single

Dim Food5B_mf As Single

Dim Food5C_mf As Single

Dim Food5D_mf As Single

Dim Food5E_mf As Single

Dim GF5_mf As Single

Dim VLG5_mf As Single

Dim VPG5_mf As Single

Dim VNG5_mf As Single

Dim VWG5_mf As Single

Dim KD5_mf As Single

Dim Zgut5_mf As Single

Dim KGB5_mf As Single

Dim KE5_mf As Single

Dim CB5_mf As Single

Dim GD6_mf As Single

Dim Food6B_mf As Single

Dim Food6C_mf As Single

Dim Food6D_mf As Single

Dim Food6E_mf As Single

Dim GF6_mf As Single

Dim VLG6_mf As Single

Dim VPG6 mf As Single

Dim VNG6_mf As Single

Dim VWG6_mf As Single

Dim KD6_mf As Single

Dim Zgut6_mf As Single

Dim KGB6_mf As Single

Dim KE6_mf As Single

Dim CB6_mf As Single

Dim GD7_mf As Single

Dim Food7B mf As Single

Dim Food7C_mf As Single

Dim Food7D_mf As Single

Dim Food7E_mf As Single

Dim GF7_mf As Single

Dim VLG7_mf As Single

Dim VPG7_mf As Single

Dim VNG7 mf As Single

Dim VWG7_mf As Single

XXX

Dim KD7_mf As Single

Dim Zgut7 mf As Single

Dim KGB7 mf As Single

Dim KE7 mf As Single

Dim CB7 mf As Single

Dim GD8_mf As Single

Dim Food8B_mf As Single

Dim Food8C_mf As Single

Dim Food8D_mf As Single

Dim Food8E_mf As Single

Dim GF8_mf As Single

Dim VLG8_mf As Single

Dim VPG8_mf As Single

Dim VNG8_mf As Single

Dim VWG8_mf As Single

Dim KD8_mf As Single

Dim Zgut8_mf As Single

Dim KGB8_mf As Single

Dim KE8_mf As Single

Dim CB8 mf As Single

Dim GD9 mf As Single

Dim Food9B_mf As Single

Dim Food9C_mf As Single

Dim Food9D_mf As Single

Dim Food9E_mf As Single

Dim GF9_mf As Single

Dim VLG9_mf As Single

Dim VPG9_mf As Single

Dim VNG9_mf As Single

Dim VWG9_mf As Single

Dim KD9 mf As Single

Dim Zgut9_mf As Single

Dim KGB9_mf As Single

Dim KE9_mf As Single

Dim CB9_mf As Single

Dim GV3_mf As Single

Dim GV4_mf As Single

Dim GV5_mf As Single

Dim GV6 mf As Single

Dim GV7_mf As Single

Dim GV8 mf As Single

Dim GV9 mf As Single

Dim K13_mf As Single

Dim K14_mf As Single

Dim K15_mf As Single

Dim K16_mf As Single

Dim K17_mf As Single Dim K18_mf As Single

Dim K19_mf As Single Dim K23_mf As Single Dim K24_mf As Single Dim K25_mf As Single Dim K26_mf As Single Dim K27_mf As Single Dim K28_mf As Single Dim K29_mf As Single

Dim MFon As Single Dim SFFC As Single Dim CPV As Single

'Added to store values between sub and function Private dic As Scripting.Dictionary

'Value key constants

Private Const PHYTOPLANKTON As String = "phytoplankton"
Private Const ZOOPLANKTON As String = "zooplankton"
Private Const COMPARTMENT4 As String = "compartment4"
Private Const COMPARTMENT5 As String = "compartment5"
Private Const COMPARTMENT6 As String = "compartment6"
Private Const COMPARTMENT7 As String = "compartment7"
Private Const COMPARTMENT8 As String = "compartment8"
Private Const COMPARTMENT9 As String = "compartment9"
Private Const COMPARTMENT10 As String = "compartment10"
Private Const COMPARTMENT11 As String = "compartment11"
Private Const COMPARTMENT12 As String = "compartment12"
Private Const COMPARTMENT13 As String = "compartment13"
Private Const COMPARTMENT14 As String = "compartment14"

Private Const PHYTOPLANKTON_mf As String = "phytoplankton_mf"
Private Const ZOOPLANKTON_mf As String = "zooplankton_mf"
Private Const COMPARTMENT4_mf As String = "compartment4_mf"
Private Const COMPARTMENT5_mf As String = "compartment5_mf"
Private Const COMPARTMENT6_mf As String = "compartment6_mf"
Private Const COMPARTMENT7_mf As String = "compartment7_mf"
Private Const COMPARTMENT8_mf As String = "compartment8_mf"
Private Const COMPARTMENT9 mf As String = "compartment9 mf"

'Function to calculate tissue concentration for specific species and chemical

Public Function TissueConcentration(species As String, chemconstant As Integer) As Single

'Chemical Specific Parameters

KOW = 10 ^ Worksheets("Output").Cells(4, 4 + chemconstant)

LPRSA Bioaccumulation Model Calibration Report – Appendix B xxxii

```
CST = Worksheets("Output").Cells(6, 4 + chemconstant)
  CPART = Worksheets("Output").Cells(7, 4 + chemconstant)
  CWB = Worksheets("Output").Cells(8, 4 + chemconstant)
  CSD = Worksheets("Output").Cells(9, 4 + chemconstant)
  CFL = Worksheets("Output").Cells(10, 4 + chemconstant)
  CST_mf = Worksheets("Output").Cells(6, 17 + chemconstant)
  CPART_mf = Worksheets("Output").Cells(7, 17 + chemconstant)
  CWB_mf = Worksheets("Output").Cells(8, 17 + chemconstant)
  CSD_mf = Worksheets("Output").Cells(9, 17 + chemconstant)
  CFL mf = Worksheets("Output").Cells(10, 17 + chemconstant)
  CPV = Worksheets("Output").Cells(51 + chemconstant / 4, 12)
  KM3 = Worksheets("Output").Cells(55 + chemconstant, 6)
  KM4 = Worksheets("Output").Cells(55 + chemconstant, 7)
  KM5 = Worksheets("Output").Cells(55 + chemconstant, 8)
  KM6 = Worksheets("Output").Cells(55 + chemconstant, 9)
  KM7 = Worksheets("Output").Cells(55 + chemconstant, 10)
  KM8 = Worksheets("Output").Cells(55 + chemconstant, 11)
  KM9 = Worksheets("Output").Cells(55 + chemconstant, 12)
  KM10 = Worksheets("Output").Cells(55 + chemconstant, 13)
  KM11 = Worksheets("Output").Cells(55 + chemconstant, 14)
  KM12 = Worksheets("Output").Cells(55 + chemconstant, 15)
  KM13 = Worksheets("Output").Cells(55 + chemconstant, 16)
  KM14 = Worksheets("BC").Cells(19 + chemconstant, 5)
'Call tissue concentration calculation Subroutine (runs code below)
  Call PHFWPRG5
'Write the applicable value to the cell
  TissueConcentration = CSng(dic.ltem(species))
End Function
Sub PHFWPRG5()
  Set dic = New Scripting. Dictionary
'INPUT GENERAL PARAMETERS
  VLBsed = 0
  VNBsed = 0
  VPBsed = Worksheets("Output").Cells(15, 4)
  VWBsed = 1 - VPBsed
  VLBsed mf = 0
  VNBsed mf = 0
  VPBsed mf = Worksheets("Output").Cells(15, 5)
  VWBsed_mf = 1 - VPBsed_mf
```



```
VLBpart = 0
  VNBpart = 0
  VPBpart = Worksheets("Output").Cells(16, 4)
  VWBpart = 1 - VPBpart
  VLBpart_mf = 0
  VNBpart_mf = 0
  VPBpart_mf = Worksheets("Output").Cells(16, 5)
  VWBpart_mf = 1 - VPBpart_mf
  VLBpart_DET = 0
  VNBpart DET = 0
  VPBpart DET = Worksheets("Output").Cells(17, 4)
  VWBpart_DET = 1 - VPBpart_DET
  VLBpart_DET_mf = 0
  VNBpart_DET_mf = 0
  VPBpart_DET_mf = Worksheets("Output").Cells(17, 5)
  VWBpart DET mf = 1 - VPBpart DET mf
  TW = Worksheets("Output").Cells(18, 4)
  TW_mf = Worksheets("Output").Cells(18, 5)
  DOconstant = Worksheets("Index").Cells(3, 1)
  COX = (-0.24 * TW + 14.04) * Worksheets("Index").Cells(4 + DOconstant, 3)
  COX_mf = (-0.24 * TW_mf + 14.04) * Worksheets("Index").Cells(4 + DOconstant, 3)
  EDA = Worksheets("Output").Cells(35, 4)
  EDB = Worksheets("Output").Cells(36, 4)
  BETA = Worksheets("Output").Cells(37, 4)
  GAMMA = Worksheets("Output").Cells(38, 4)
  'Henry's Law constant - for the purposes of the bioaccumulation model, this parameter cancels out, and thus
      an arbitrary value of 1 is used in the model.
  'The correct value at 25°C for 2378-TCDD is 1.64 Pa m³/mol and for tetraCB is 2.29 Pa m³/mol.1
  H = 1
  Zwater = 1 / H
  Zlipid = Zwater * KOW
'Mudflat Calculations
'PHYTOPLANKTON (2)
```

¹ The sources for the Henry's law constants provided are EPA's technical factsheet on dioxin (EPA 2014) and is Shiu and Mackay (1986) for tetraCB. Both values are based on a temperature of 25°C.


```
VLB2 = Worksheets("Output").Cells(42, 5)
  VWB2 = Worksheets("Output").Cells(43, 5)
  VNB2 = 0
  VPB2 = Worksheets("Output").Cells(44, 5)
  UA = Worksheets("Output").Cells(33, 4)
  UB = Worksheets("Output").Cells(34, 4)
  K12 = 1 / (UA + (UB / KOW))
  KPW2 = (VLB2 * KOW) + (VPB2 * GAMMA * KOW) + VWB2
  K22 = K12 / KPW2
  KG2 = Worksheets("Output").Cells(54, 5)
  FPW2 = Worksheets("Output").Cells(50, 5)
  CB2_mf = (CWB_mf * K12 * (1 - FPW2)) / (K22 + KG2)
  'add check value to Index worksheet
  dic.Add PHYTOPLANKTON_mf, CB2_mf
'ZOOPLANKTON (3)
'_____
  WB3 = Worksheets("Output").Cells(41, 6)
  VLB3 = Worksheets("Output").Cells(42, 6)
  VWB3 = Worksheets("Output").Cells(43, 6)
  VNB3 = Worksheets("Output").Cells(45, 6)
  VPB3 = 0
  WBL3 = WB3 * VLB3
  QW3 = 88.3 * WB3 ^ 0.6
  QL3 = QW3 * 0.01
  GD3 mf = 0.022 * WB3 ^ 0.85 * Exp(0.06 * TW mf)
  'Temperature dependent growth
  If TW mf < 17.5 Then
    KG3 = 0.000502 * WB3 ^ -0.2
  Else
    KG3 = 0.00251 * WB3 ^ -0.2
  End If
  GV3 mf = (1400 * (WB3 ^ 0.65)) / COX mf
  DF32 = Worksheets("Diet").Cells(4, 4)
  eL3 = Worksheets("Output").Cells(46, 6)
  eP3 = Worksheets("Output").Cells(47, 6)
  eN3 = Worksheets("Output").Cells(48, 6)
  eW3 = Worksheets("Output").Cells(49, 6)
  Food3A = DF32 * VLB2
  Food3B = DF32 * VNB2
  Food3C = DF32 * VWB2
```



```
Food3D = DF32 * VPB2
            GF3 mf = (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) * Food3D)) *
            VLG3 = ((1 - eL3) * Food3A) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) + ((1 - eV3) * Food3C) +
                                  * Food3D))
            VNG3 = ((1 - eN3) * Food3B) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) + ((1 - eW3) * Food3B) +
                                  * Food3D))
            VWG3 = ((1 - eW3) * Food3C) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eV3) *
                                  eP3) * Food3D))
            VPG3 = ((1 - eP3) * Food3D) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) *
                                   * Food3D))
            ED3 = 1 / (EDA * KOW + EDB)
            KD3_mf = ED3 * GD3_mf / WB3
            EWW3 = 1 / (1.85 + (155 / KOW))
            K13 mf = EWW3 * GV3 mf / WB3
            KPW3 = (VLB3 * KOW) + (VNB3 * BETA * KOW) + VWB3
            K23_mf = K13_mf / KPW3
            Zorg3 = (VLB3 * Zlipid) + (VNB3 * BETA * Zlipid) + (VWB3 * Zwater)
            Zgut3 = VLG3 * Zlipid + VNG3 * BETA * Zlipid + VPG3 * GAMMA * Zlipid + VWG3 * Zwater
            KGB3 = Zgut3 / Zorg3
            KE3 mf = KGB3 / WB3 * ED3 * GF3 mf
            FPW3 = Worksheets("Output").Cells(50, 6)
            CB3_mf = (CWB_mf * K13_mf * (1 - FPW3) + CB2_mf * KD3_mf * DF32) / (K23_mf + KE3_mf + KG3 + KM3)
            'add check value to Index worksheet
            dic.Add ZOOPLANKTON_mf, CB3_mf
'COMPARTMENT4 (DEP - benthic deposit feeder)
            WB4 = Worksheets("Output").Cells(41, 7)
            VLB4 = Worksheets("Output").Cells(42, 7)
            VWB4 = Worksheets("Output").Cells(43, 7)
            VNB4 = Worksheets("Output").Cells(45, 7)
            VPB4 = 0
            WBL4 = WB4 * VLB4
            QW4 = 88.3 * WB4 ^ 0.6
            QL4 = QW4 * 0.01
            'Temperature dependent growth
            If TW_mf < 17.5 Then
                         KG4 = 0.000502 * WB4 ^ -0.2
            Else
                          KG4 = 0.00251 * WB4 ^ -0.2
            End If
            GV4_mf = (1400 * (WB4 ^ 0.65)) / COX_mf
            GD4 mf = 0.022 * WB4 ^ 0.85 * Exp(0.06 * TW_mf)
```



```
DF41 = Worksheets("Diet").Cells(5, 2)
        DF4p = Worksheets("Diet").Cells(5, 3)
        DF42 = Worksheets("Diet").Cells(5, 4)
        DF43 = Worksheets("Diet").Cells(5, 5)
        eL4 = Worksheets("Output").Cells(46, 7)
        eP4 = Worksheets("Output").Cells(47, 7)
        eN4 = Worksheets("Output").Cells(48, 7)
        eW4 = Worksheets("Output").Cells(49, 7)
        FPW4 = Worksheets("Output").Cells(50, 7)
        Food4A = DF41 * VLBsed_mf + DF4p * VLBpart_DET_mf + DF42 * VLB2 + DF43 * VLB3
        Food4B mf = DF41 * VNBsed_mf + DF4p * VNBpart_DET_mf + DF42 * VNB2 + DF43 * VNB3
        Food4C mf = DF41 * VWBsed mf + DF4p * VWBpart DET mf + DF42 * VWB2 + DF43 * VWB3
        Food4D mf = DF41 * VPBsed mf + DF4p * VPBpart DET mf + DF42 * VPB2 + DF43 * VPB3
        Food4E mf = DF41 * CST mf + DF4p * CFL mf + DF42 * CB2 mf + DF43 * CB3 mf
        GF4 mf = (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B mf) + ((1 - eV4) * Food4C mf) + ((1 - eP4) * Food4C mf) + ((1 - eV4) * Food4C mf) + ((1 - eV4
                      Food4D mf)) * GD4 mf
        VLG4_mf = ((1 - eL4) * Food4A) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B_mf) + ((1 - eW4) * Food4C_mf)
                       + ((1 - eP4) * Food4D_mf))
        VNG4_mf = ((1 - eN4) * Food4B_mf) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B_mf) + ((1 - eW4) * Food4B_mf] + ((1 - eW
                      Food4C mf) + ((1 - eP4) * Food4D mf))
        VWG4 mf = ((1 - eW4) * Food4C mf) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B mf) + ((1 - eW4) *
                      Food4C mf) + ((1 - eP4) * Food4D mf))
        VPG4 \text{ mf} = ((1 - eP4) * Food4D \text{ mf}) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B \text{ mf}) + ((1 - eW4) * Food4D \text{ mf}
                      Food4C mf) + ((1 - eP4) * Food4D mf))
        ED4 = 1 / (EDA * KOW + EDB)
        KD4_mf = ED4 * GD4_mf / WB4
        EWW4 = 1 / (1.85 + (155 / KOW))
        K14_mf = EWW4 * GV4_mf / WB4
        KPW4 = (VLB4 * KOW) + (VNB4 * BETA * KOW) + VWB4
        K24 \text{ mf} = K14 \text{ mf} / KPW4
        Zorg4 = (VLB4 * Zlipid) + (VNB4 * BETA * Zlipid) + (VWB4 * Zwater)
        Zgut4_mf = VLG4_mf * Zlipid + VNG4_mf * BETA * Zlipid + VPG4_mf * GAMMA * Zlipid + VWG4_mf * Zwater
        KGB4_mf = Zgut4_mf / Zorg4
        KE4 mf = KGB4 mf / WB4 * ED4 * GF4 mf
        CB4 mf = (CWB mf * K14 mf * (1 - FPW4) + K14 mf * FPW4 * CSD mf + KD4 mf * Food4E mf) / (K24 mf +
                       KE4_mf + KG4 + KM4)
        'add check value to Index worksheet
        dic.Add COMPARTMENT4 mf, CB4 mf
'COMPARTMENT5 (DET - benthic detritivore)
        WB5 = Worksheets("Output").Cells(41, 8)
        VLB5 = Worksheets("Output").Cells(42, 8)
        VWB5 = Worksheets("Output").Cells(43, 8)
        VNB5 = Worksheets("Output").Cells(45, 8)
        VPB5 = 0
```



```
WBL5 = WB5 * VLB5
QW5 = 88.3 * WB5 ^ 0.6
QL5 = QW5 * 0.01
'Temperature dependent growth
If TW_mf < 17.5 Then
        KG5 = 0.000502 * WB5 ^ -0.2
Else
        KG5 = 0.00251 * WB5 ^ -0.2
End If
GV5 mf = (1400 * (WB5 ^ 0.65)) / COX mf
GD5 mf = 0.022 * WB5 ^ 0.85 * Exp(0.06 * TW mf)
DF51 = Worksheets("Diet").Cells(6, 2)
DF5p = Worksheets("Diet").Cells(6, 3)
DF52 = Worksheets("Diet").Cells(6, 4)
DF53 = Worksheets("Diet").Cells(6, 5)
DF54 = Worksheets("Diet").Cells(6, 6)
eL5 = Worksheets("Output").Cells(46, 8)
eP5 = Worksheets("Output").Cells(47, 8)
eN5 = Worksheets("Output").Cells(48, 8)
eW5 = Worksheets("Output").Cells(49, 8)
FPW5 = Worksheets("Output").Cells(50, 8)
Food5A = DF51 * VLBsed + DF5p * VLBpart_DET_mf + DF52 * VLB2 + DF53 * VLB3 + DF54 * VLB4
Food5B_mf = DF51 * VNBsed_mf + DF5p * VNBpart_DET_mf + DF52 * VNB2 + DF53 * VNB3 + DF54 * VNB4
Food5C_mf = DF51 * VWBsed_mf + DF5p * VWBpart_DET_mf + DF52 * VWB2 + DF53 * VWB3 + DF54 *
              VWB4
Food5D mf = DF51 * VPBsed mf + DF5p * VPBpart DET mf + DF52 * VPB2 + DF53 * VPB3 + DF54 * VPB4
Food5E mf = DF51 * CST mf + DF5p * CFL mf + DF52 * CB2 mf + DF53 * CB3 mf + DF54 * CB4 mf
GF5\_mf = (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B\_mf) + ((1 - eW5) * Food5C\_mf) + ((1 - eP5) * Food5B\_mf) + ((1 - eV5) * Food5C\_mf) + ((1 - eV5) * Food5B\_mf) + ((1 - eV5) * Food5B\_mf) + ((1 - eV5) * Food5C\_mf) + ((1 - eV5) * Food5B\_mf) + ((1 - eV5) * Food5B\_mf) + ((1 - eV5) * Food5C\_mf) + ((1 - eV5) * Food5B\_mf) + ((1 - eV5
              Food5D mf)) * GD5 mf
VLG5_mf = ((1 - eL5) * Food5A) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B_mf) + ((1 - eW5) * Food5C_mf)
              + ((1 - eP5) * Food5D_mf))
VNG5_mf = ((1 - eN5) * Food5B_mf) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B_mf) + ((1 - eW5) * Food5B_mf) + ((1 - eW
              Food5C_mf) + ((1 - eP5) * Food5D_mf))
VWG5_mf = ((1 - eW5) * Food5C_mf) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B_mf) + ((1 - eW5) *
              Food5C_mf) + ((1 - eP5) * Food5D_mf))
VPG5_mf = ((1 - eP5) * Food5D_mf) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B_mf) + ((1 - eW5) * Food5B_mf) + ((1 - eW
              Food5C_mf) + ((1 - eP5) * Food5D_mf))
ED5 = 1 / (EDA * KOW + EDB)
KD5 mf = ED5 * GD5 mf / WB5
EWW5 = 1 / (1.85 + (155 / KOW))
K15_mf = EWW5 * GV5_mf / WB5
KPW5 = (VLB5 * KOW) + (VNB5 * BETA * KOW) + VWB5
K25_mf = K15_mf / KPW5
Zorg5 = (VLB5 * Zlipid) + (VNB5 * BETA * Zlipid) + (VWB5 * Zwater)
Zgut5 mf = VLG5 mf * Zlipid + VNG5 mf * BETA * Zlipid + VPG5 mf * GAMMA * Zlipid + VWG5 mf * Zwater
KGB5_mf = Zgut5_mf / Zorg5
KE5_mf = KGB5_mf / WB5 * ED5 * GF5_mf
```



```
CB5_mf = (CWB_mf * K15_mf * (1 - FPW5) + CSD_mf * K15_mf * FPW5 + KD5_mf * Food5E_mf) / (K25_mf +
      KE5 \text{ mf} + KG5 + KM5)
  'add check value to Index worksheet
  dic.Add COMPARTMENT5_mf, CB5_mf
'COMPARTMENT6 (C/O - benthic carnivore/omnivore)
  WB6 = Worksheets("Output").Cells(41, 9)
  VLB6 = Worksheets("Output").Cells(42, 9)
  VWB6 = Worksheets("Output").Cells(43, 9)
  VNB6 = Worksheets("Output").Cells(45, 9)
  VPB6 = 0
  WBL6 = WB6 * VLB6
  QW6 = 88.3 * WB6 ^ 0.6
  QL6 = QW6 * 0.01
  'Temperature dependent growth
  If TW_mf < 17.5 Then
    KG6 = 0.000502 * WB6 ^ -0.2
  Else
    KG6 = 0.00251 * WB6 ^ -0.2
  End If
  GV6 mf = (1400 * (WB6 ^ 0.65)) / COX mf
  GD6 mf = 0.022 * WB6 ^ 0.85 * Exp(0.06 * TW mf)
  DF61 = Worksheets("Diet").Cells(7, 2)
  DF6p = Worksheets("Diet").Cells(7, 3)
  DF62 = Worksheets("Diet").Cells(7, 4)
  DF63 = Worksheets("Diet").Cells(7, 5)
  DF64 = Worksheets("Diet").Cells(7, 6)
  DF65 = Worksheets("Diet").Cells(7, 7)
  eL6 = Worksheets("Output").Cells(46, 9)
  eP6 = Worksheets("Output").Cells(47, 9)
  eN6 = Worksheets("Output").Cells(48, 9)
  eW6 = Worksheets("Output").Cells(49, 9)
  FPW6 = Worksheets("Output").Cells(50, 9)
  Food6A = DF61 * VLBsed + DF6p * VLBpart_DET_mf + DF62 * VLB2 + DF63 * VLB3 + DF64 * VLB4 + DF65 *
      VLB5
  Food6B_mf = DF61 * VNBsed_mf + DF6p * VNBpart_DET_mf + DF62 * VNB2 + DF63 * VNB3 + DF64 * VNB4
      + DF65 * VNB5
  Food6C_mf = DF61 * VWBsed_mf + DF6p * VWBpart_DET_mf + DF62 * VWB2 + DF63 * VWB3 + DF64 *
      VWB4 + DF65 * VWB5
  Food6D mf = DF61 * VPBsed mf + DF6p * VPBpart DET mf + DF62 * VPB2 + DF63 * VPB3 + DF64 * VPB4
      + DF65 * VPB5
  Food6E_mf = DF61 * CST_mf + DF6p * CFL_mf + DF62 * CB2_mf + DF63 * CB3_mf + DF64 * CB4_mf +
```



```
DF65 * CB5_mf
         GF6 mf = (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B mf) + ((1 - eW6) * Food6C mf) + ((1 - eP6) * Food6C mf) + ((1 - eV6) * Food6C mf) + ((1 - eV6
                          Food6D_mf)) * GD6_mf
         VLG6_mf = ((1 - eL6) * Food6A) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B_mf) + ((1 - eW6) * Food6C_mf)
                          + ((1 - eP6) * Food6D mf))
         VNG6_mf = ((1 - eN6) * Food6B_mf) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B_mf) + ((1 - eW6) * Food6B_mf) + ((1 - eW
                          Food6C_mf) + ((1 - eP6) * Food6D_mf))
         VWG6_mf = ((1 - eW6) * Food6C_mf) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B_mf) + ((1 - eW6) *
                          Food6C_mf) + ((1 - eP6) * Food6D_mf))
         VPG6\_mf = ((1 - eP6) * Food6D\_mf) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B\_mf) + ((1 - eW6) * Food6B\_mf) + ((1 - eW
                           Food6C_mf) + ((1 - eP6) * Food6D_mf))
         ED6 = 1 / (EDA * KOW + EDB)
         KD6_mf = ED6 * GD6_mf / WB6
         EWW6 = 1 / (1.85 + (155 / KOW))
         K16 mf = EWW6 * GV6 mf / WB6
         KPW6 = (VLB6 * KOW) + (VNB6 * BETA * KOW) + VWB6
         K26_mf = K16_mf / KPW6
         Zorg6 = (VLB6 * Zlipid) + (VNB6 * BETA * Zlipid) + (VWB6 * Zwater)
         Zgut6 mf = VLG6 mf * Zlipid + VNG6 mf * BETA * Zlipid + VPG6 mf * GAMMA * Zlipid + VWG6 mf * Zwater
         KGB6 mf = Zgut6 mf / Zorg6
         KE6 \text{ mf} = KGB6 \text{ mf} / WB6 * ED6 * GF6 \text{ mf}
         CB6_mf = (CWB_mf * K16_mf * (1 - FPW6) + CSD_mf * K16_mf * FPW6 + KD6_mf * Food6E_mf) / (K26_mf +
                          KE6_mf + KG6 + KM6)
         'add check value to Index worksheet
         dic.Add COMPARTMENT6_mf, CB6_mf
'COMPARTMENT7 (filter feeding fish)
         WB7 = Worksheets("Output").Cells(41, 10)
         VLB7 = Worksheets("Output").Cells(42, 10)
         VWB7 = Worksheets("Output").Cells(43, 10)
         VNB7 = Worksheets("Output").Cells(45, 10)
         VPB7 = 0
         WBL7 = WB7 * VLB7
         QW7 = 88.3 * WB7 ^ 0.6
         QL7 = QW7 * 0.01
         'Temperature dependent growth
         If TW mf < 17.5 Then
                   KG7 = 0.000502 * WB7 ^ -0.2
         Else
                    KG7 = 0.00251 * WB7 ^ -0.2
         End If
         GV7 mf = (1400 * (WB7 ^ 0.65)) / COX mf
         GD7 mf = 0.022 * WB7 ^ 0.85 * Exp(0.06 * TW mf)
```



```
DF71 = Worksheets("Diet").Cells(8, 2)
       DF7p = Worksheets("Diet").Cells(8, 3)
       DF72 = Worksheets("Diet").Cells(8, 4)
       DF73 = Worksheets("Diet").Cells(8, 5)
       DF74 = Worksheets("Diet").Cells(8, 6)
       DF75 = Worksheets("Diet").Cells(8, 7)
       DF76 = Worksheets("Diet").Cells(8, 8)
       eL7 = Worksheets("Output").Cells(46, 10)
       eP7 = Worksheets("Output").Cells(47, 10)
       eN7 = Worksheets("Output").Cells(48, 10)
       eW7 = Worksheets("Output").Cells(49, 10)
       FPW7 = Worksheets("Output").Cells(50, 10)
       Food7A = DF71 * VLBsed + DF7p * VLBpart mf + DF72 * VLB2 + DF73 * VLB3 + DF74 * VLB4 + DF75 *
                    VLB5 + DF76 * VLB6
       Food7B mf = DF71 * VNBsed mf + DF7p * VNBpart mf + DF72 * VNB2 + DF73 * VNB3 + DF74 * VNB4 +
                    DF75 * VNB5 + DF76 * VNB6
       Food7C_mf = DF71 * VWBsed_mf + DF7p * VWBpart_mf + DF72 * VWB2 + DF73 * VWB3 + DF74 * VWB4 +
                    DF75 * VWB5 + DF76 * VWB6
       Food7D mf = DF71 * VPBsed mf + DF7p * VPBpart mf + DF72 * VPB2 + DF73 * VPB3 + DF74 * VPB4 +
                    DF75 * VPB5 + DF76 * VPB6
       Food7E mf = DF71 * CST mf + DF7p * CPART mf + DF72 * CB2 mf + DF73 * CB3 mf + DF74 * CB4 mf +
                    DF75 * CB5_mf + DF76 * CB6_mf
       GF7_mf = (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B_mf) + ((1 - eW7) * Food7C_mf) + ((1 - eP7) * Food7B_mf) + ((1 - eV7) * Food7C_mf) + ((1 - eV7) * Food7B_mf) + ((1 - eV7
                    Food7D mf)) * GD7 mf
       VLG7_mf = ((1 - eL7) * Food7A) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B_mf) + ((1 - eW7) * Food7C_mf)
                     + ((1 - eP7) * Food7D_mf))
       VNG7_mf = ((1 - eN7) * Food7B_mf) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B_mf) + ((1 - eW7) * Food7B_mf) + ((1 - eW
                    Food7C_mf) + ((1 - eP7) * Food7D_mf))
       VWG7_mf = ((1 - eW7) * Food7C_mf) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B_mf) + ((1 - eW7) *
                    Food7C_mf) + ((1 - eP7) * Food7D_mf))
       VPG7_mf = ((1 - eP7) * Food7D_mf) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B_mf) + ((1 - eW7) * Food7B_mf) + ((1 - eW
                    Food7C_mf) + ((1 - eP7) * Food7D_mf))
       ED7 = 1 / (EDA * KOW + EDB)
       KD7_mf = ED7 * GD7_mf / WB7
       EWW7 = 1 / (1.85 + (155 / KOW))
       K17 mf = EWW7 * GV7 mf / WB7
       KPW7 = (VLB7 * KOW) + (VNB7 * BETA * KOW) + VWB7
       K27 \text{ mf} = K17 \text{ mf} / KPW7
       Zorg7 = (VLB7 * Zlipid) + (VNB7 * BETA * Zlipid) + (VWB7 * Zwater)
       Zgut7 mf = VLG7 mf * Zlipid + VNG7 mf * BETA * Zlipid + VPG7 mf * GAMMA * Zlipid + VWG7 mf * Zwater
       KGB7 mf = Zgut7 mf / Zorg7
       KE7 mf = KGB7 mf / WB7 * ED7 * GF7 mf
       CB7_mf = (CWB_mf * K17_mf * (1 - FPW7) + CSD_mf * K17_mf * FPW7 + KD7_mf * Food7E_mf) / (K27_mf +
                     KE7 \text{ mf} + KG7 + KM7)
       'add check value to Index worksheet
       dic.Add COMPARTMENT7_mf, CB7_mf
'COMPARTMENT8 (SFF - small forage fish)
```


хlі

```
WB8 = Worksheets("Output").Cells(41, 11)
VLB8 = Worksheets("Output").Cells(42, 11)
VWB8 = Worksheets("Output").Cells(43, 11)
VNB8 = Worksheets("Output").Cells(45, 11)
VPB8 = 0
WBL8 = WB8 * VLB8
QW8 = 88.3 * WB8 ^ 0.6
QL8 = QW8 * 0.01
'Temperature dependent growth
If TW_mf < 17.5 Then
  KG8 = 0.000502 * WB8 ^ -0.2
Else
  KG8 = 0.00251 * WB8 ^ -0.2
End If
GV8_mf = (1400 * (WB8 ^ 0.65)) / COX_mf
GD8 mf = 0.022 * WB8 ^ 0.85 * Exp(0.06 * TW mf)
DF81 = Worksheets("Diet").Cells(9, 2)
DF8p = Worksheets("Diet").Cells(9, 3)
DF82 = Worksheets("Diet").Cells(9, 4)
DF83 = Worksheets("Diet").Cells(9, 5)
DF84 = Worksheets("Diet").Cells(9, 6)
DF85 = Worksheets("Diet").Cells(9, 7)
DF86 = Worksheets("Diet").Cells(9, 8)
DF87 = Worksheets("Diet").Cells(9, 9)
eL8 = Worksheets("Output").Cells(46, 11)
eP8 = Worksheets("Output").Cells(47, 11)
eN8 = Worksheets("Output").Cells(48, 11)
eW8 = Worksheets("Output").Cells(49, 11)
FPW8 = Worksheets("Output").Cells(50, 11)
Food8A = DF81 * VLBsed + DF8p * VLBpart_DET_mf + DF82 * VLB2 + DF83 * VLB3 + DF84 * VLB4 + DF85 *
   VLB5 + DF86 * VLB6 + DF87 * VLB7
Food8B mf = DF81 * VNBsed mf + DF8p * VNBpart DET mf + DF82 * VNB2 + DF83 * VNB3 + DF84 * VNB4
    + DF85 * VNB5 + DF86 * VNB6 + DF87 * VNB7
Food8C_mf = DF81 * VWBsed_mf + DF8p * VWBpart_DET_mf + DF82 * VWB2 + DF83 * VWB3 + DF84 *
   VWB4 + DF85 * VWB5 + DF86 * VWB6 + DF87 * VWB7
Food8D_mf = DF81 * VPBsed_mf + DF8p * VPBpart_DET_mf + DF82 * VPB2 + DF83 * VPB3 + DF84 * VPB4
   + DF85 * VPB5 + DF86 * VPB6 + DF87 * VPB7
Food8E_mf = DF81 * CST_mf + DF8p * CFL_mf + DF82 * CB2_mf + DF83 * CB3_mf + DF84 * CB4_mf +
   DF85 * CB5_mf + DF86 * CB6_mf + DF87 * CB7_mf
GF8_mf = (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B_mf) + ((1 - eW8) * Food8C_mf) + ((1 - eP8) *
   Food8D_mf)) * GD8_mf
VLG8_mf = ((1 - eL8) * Food8A) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B_mf) + ((1 - eW8) * Food8C_mf)
   + ((1 - eP8) * Food8D_mf))
VNG8_mf = ((1 - eN8) * Food8B_mf) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B_mf) + ((1 - eW8) *
   Food8C_mf) + ((1 - eP8) * Food8D_mf))
VWG8_mf = ((1 - eW8) * Food8C_mf) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B_mf) + ((1 - eW8) *
```


xlii

```
Food8C_mf) + ((1 - eP8) * Food8D_mf))
    VPG8 mf = ((1 - eP8) * Food8D mf) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B mf) + ((1 - eW8) * Food8D mf) + ((1 - eW
             Food8C_mf) + ((1 - eP8) * Food8D_mf))
    ED8 = 1 / (EDA * KOW + EDB)
    KD8_mf = ED8 * GD8_mf / WB8
    EWW8 = 1 / (1.85 + (155 / KOW))
    K18_mf = EWW8 * GV8_mf / WB8
    KPW8 = (VLB8 * KOW) + (VNB8 * BETA * KOW) + VWB8
    K28 \text{ mf} = K18 \text{ mf} / KPW8
    Zorg8 = (VLB8 * Zlipid) + (VNB8 * BETA * Zlipid) + (VWB8 * Zwater)
    Zgut8 mf = VLG8 mf * Zlipid + VNG8 mf * BETA * Zlipid + VPG8 mf * GAMMA * Zlipid + VWG8 mf * Zwater
    KGB8_mf = Zgut8_mf / Zorg8
    KE8_mf = KGB8_mf / WB8 * ED8 * GF8_mf
    CB8_mf = (CWB_mf * K18_mf * (1 - FPW8) + CSD_mf * K18_mf * FPW8 + KD8_mf * Food8E_mf) / (K28_mf +
             KE8 mf + KG8 + KM8)
    'add check value to Index worksheet
    dic.Add COMPARTMENT8_mf, CB8_mf
'Riverwide Calculations
'MODEL CALCULATIONS FOR PHYTOPLANKTON (2)
    VLB2 = Worksheets("Output").Cells(42, 5)
    VWB2 = Worksheets("Output").Cells(43, 5)
    VNB2 = 0
    VPB2 = Worksheets("Output").Cells(44, 5)
    UA = Worksheets("Output").Cells(33, 4)
    UB = Worksheets("Output").Cells(34, 4)
    K12 = 1 / (UA + (UB / KOW))
    KPW2 = (VLB2 * KOW) + (VPB2 * GAMMA * KOW) + VWB2
    K22 = K12 / KPW2
    KG2 = Worksheets("Output").Cells(54, 5)
    FPW2 = Worksheets("Output").Cells(50, 5)
    CB2 = (CWB * K12 * (1 - FPW2)) / (K22 + KG2)
    dic.Add PHYTOPLANKTON, CB2
'MODEL CALCULATIONS FOR ZOOPLANKTON (3)
    WB3 = Worksheets("Output").Cells(41, 6)
    VLB3 = Worksheets("Output").Cells(42, 6)
    VWB3 = Worksheets("Output").Cells(43, 6)
    VNB3 = Worksheets("Output").Cells(45, 6)
    VPB3 = 0
    WBL3 = WB3 * VLB3
    QW3 = 88.3 * WB3 ^ 0.6
    QL3 = QW3 * 0.01
```


xliii

```
GD3 = 0.022 * WB3 ^ 0.85 * Exp(0.06 * TW)
           'Temperature dependent growth
           If TW < 17.5 Then
                       KG3 = 0.000502 * WB3 ^ -0.2
           Else
                        KG3 = 0.00251 * WB3 ^ -0.2
           End If
           GV3 = (1400 * (WB3 ^ 0.65)) / COX
           DF32 = Worksheets("Diet").Cells(4, 4)
           eL3 = Worksheets("Output").Cells(46, 6)
           eP3 = Worksheets("Output").Cells(47, 6)
           eN3 = Worksheets("Output").Cells(48, 6)
           eW3 = Worksheets("Output").Cells(49, 6)
           Food3A = DF32 * VLB2
           Food3B = DF32 * VNB2
           Food3C = DF32 * VWB2
           Food3D = DF32 * VPB2
           GF3 = (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) * Food3D)) * GD3
           VLG3 = ((1 - eL3) * Food3A) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) * Food3C) + ((1 - eV3) *
                                 * Food3D))
           VNG3 = ((1 - eN3) * Food3B) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) + ((1 - eW3) * Food3B)) + ((1 - eW3) * Food3B) + ((1 - eW3) * Food3B)) + ((1 - eW3) * Food3B) + ((1 - eW3) * Food3B)) + ((1 - eW3) * 
                                 * Food3D))
           VWG3 = ((1 - eW3) * Food3C) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eV3) *
                                 eP3) * Food3D))
           VPG3 = ((1 - eP3) * Food3D) / (((1 - eL3) * Food3A) + ((1 - eN3) * Food3B) + ((1 - eW3) * Food3C) + ((1 - eP3) *
                                 * Food3D))
           ED3 = 1 / (EDA * KOW + EDB)
           KD3 = ED3 * GD3 / WB3
           EWW3 = 1 / (1.85 + (155 / KOW))
           K13 = EWW3 * GV3 / WB3
           KPW3 = (VLB3 * KOW) + (VNB3 * BETA * KOW) + VWB3
           K23 = K13 / KPW3
           Zorg3 = (VLB3 * Zlipid) + (VNB3 * BETA * Zlipid) + (VWB3 * Zwater)
           Zgut3 = VLG3 * Zlipid + VNG3 * BETA * Zlipid + VPG3 * GAMMA * Zlipid + VWG3 * Zwater
           KGB3 = Zgut3 / Zorg3
           KE3 = KGB3 / WB3 * ED3 * GF3
           FPW3 = Worksheets("Output").Cells(50, 6)
           CB3 = (CWB * K13 * (1 - FPW3) + CB2 * KD3 * DF32) / (K23 + KE3 + KG3 + KM3)
           dic.Add ZOOPLANKTON, CB3
'MODEL CALCULATIONS FOR COMPARTMENT4 (DEP - benthic deposit feeder)
           WB4 = Worksheets("Output").Cells(41, 7)
           VLB4 = Worksheets("Output").Cells(42, 7)
           VWB4 = Worksheets("Output").Cells(43, 7)
           VNB4 = Worksheets("Output").Cells(45, 7)
           VPB4 = 0
           WBL4 = WB4 * VLB4
```



```
QW4 = 88.3 * WB4 ^ 0.6
QL4 = QW4 * 0.01
'Temperature dependent growth
If TW < 17.5 Then
         KG4 = 0.000502 * WB4 ^ -0.2
Else
        KG4 = 0.00251 * WB4 ^ -0.2
End If
GV4 = (1400 * (WB4 ^ 0.65)) / COX
GD4 = 0.022 * WB4 ^ 0.85 * Exp(0.06 * TW)
DF41 = Worksheets("Diet").Cells(5, 2)
DF4p = Worksheets("Diet").Cells(5, 3)
DF42 = Worksheets("Diet").Cells(5, 4)
DF43 = Worksheets("Diet").Cells(5, 5)
eL4 = Worksheets("Output").Cells(46, 7)
eP4 = Worksheets("Output").Cells(47, 7)
eN4 = Worksheets("Output").Cells(48, 7)
eW4 = Worksheets("Output").Cells(49, 7)
FPW4 = Worksheets("Output").Cells(50, 7)
Food4A = DF41 * VLBsed + DF4p * VLBpart_DET + DF42 * VLB2 + DF43 * VLB3
Food4B = DF41 * VNBsed + DF4p * VNBpart_DET + DF42 * VNB2 + DF43 * VNB3
Food4C = DF41 * VWBsed + DF4p * VWBpart_DET + DF42 * VWB2 + DF43 * VWB3
Food4D = DF41 * VPBsed + DF4p * VPBpart_DET + DF42 * VPB2 + DF43 * VPB3
Food4E = DF41 * CST + DF4p * CFL + DF42 * CB2 + DF43 * CB3
GF4 = (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eP4) * Food4D)) * GD4
VLG4 = ((1 - eL4) * Food4A) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eP4) + ((1 - eV4) * Food4C) +
               * Food4D))
VNG4 = ((1 - eN4) * Food4B) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eP4) * Food4B) + ((1 - eW4) *
                * Food4D))
VWG4 = ((1 - eW4) * Food4C) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B) + ((1 - eW4) * Food4C) + ((1 -
               eP4) * Food4D))
VPG4 = ((1 - eP4) * Food4D) / (((1 - eL4) * Food4A) + ((1 - eN4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eP4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eW4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eW4) * Food4B) + ((1 - eW4) * Food4C) + ((1 - eW4) * Food4B) + ((1 - eW4) *
               * Food4D))
ED4 = 1 / (EDA * KOW + EDB)
KD4 = ED4 * GD4 / WB4
EWW4 = 1 / (1.85 + (155 / KOW))
K14 = EWW4 * GV4 / WB4
KPW4 = (VLB4 * KOW) + (VNB4 * BETA * KOW) + VWB4
K24 = K14 / KPW4
Zorg4 = (VLB4 * Zlipid) + (VNB4 * BETA * Zlipid) + (VWB4 * Zwater)
Zgut4 = VLG4 * Zlipid + VNG4 * BETA * Zlipid + VPG4 * GAMMA * Zlipid + VWG4 * Zwater
KGB4 = Zgut4 / Zorg4
KE4 = KGB4 / WB4 * ED4 * GF4
CB4 = (CWB * K14 * (1 - FPW4) + K14 * FPW4 * CSD + KD4 * Food4E) / (K24 + KE4 + KG4 + KM4)
dic.Add COMPARTMENT4, CB4
```

'MODEL CALCULATIONS FOR COMPARTMENT5 (DET - benthic detritivore)

xΙν

```
WB5 = Worksheets("Output").Cells(41, 8)
VLB5 = Worksheets("Output").Cells(42, 8)
VWB5 = Worksheets("Output").Cells(43, 8)
VNB5 = Worksheets("Output").Cells(45, 8)
VPB5 = 0
WBL5 = WB5 * VLB5
QW5 = 88.3 * WB5 ^ 0.6
QL5 = QW5 * 0.01
'Temperature dependent growth
If TW < 17.5 Then
        KG5 = 0.000502 * WB5 ^ -0.2
Else
        KG5 = 0.00251 * WB5 ^ -0.2
End If
GV5 = (1400 * (WB5 ^ 0.65)) / COX
GD5 = 0.022 * WB5 ^ 0.85 * Exp(0.06 * TW)
DF51 = Worksheets("Diet").Cells(6, 2)
DF5p = Worksheets("Diet").Cells(6, 3)
DF52 = Worksheets("Diet").Cells(6, 4)
DF53 = Worksheets("Diet").Cells(6, 5)
DF54 = Worksheets("Diet").Cells(6, 6)
eL5 = Worksheets("Output").Cells(46, 8)
eP5 = Worksheets("Output").Cells(47, 8)
eN5 = Worksheets("Output").Cells(48, 8)
eW5 = Worksheets("Output").Cells(49, 8)
FPW5 = Worksheets("Output").Cells(50, 8)
Food5A = DF51 * VLBsed + DF5p * VLBpart_DET + DF52 * VLB2 + DF53 * VLB3 + DF54 * VLB4
Food5B = DF51 * VNBsed + DF5p * VNBpart DET + DF52 * VNB2 + DF53 * VNB3 + DF54 * VNB4
Food5C = DF51 * VWBsed + DF5p * VWBpart DET + DF52 * VWB2 + DF53 * VWB3 + DF54 * VWB4
Food5D = DF51 * VPBsed + DF5p * VPBpart DET + DF52 * VPB2 + DF53 * VPB3 + DF54 * VPB4
Food5E = DF51 * CST + DF5p * CFL + DF52 * CB2 + DF53 * CB3 + DF54 * CB4
GF5 = (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B) + ((1 - eW5) * Food5C) + ((1 - eP5) * Food5D)) * GD5
VLG5 = ((1 - eL5) * Food5A) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B) + ((1 - eW5) * Food5C) + ((1 - eP5) * Food5C) + ((1 - eV5) *
               * Food5D))
VNG5 = ((1 - eN5) * Food5B) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B) + ((1 - eW5) * Food5C) + ((1 - eP5) + ((1 - eW5) * Food5C) +
               * Food5D))
VWG5 = ((1 - eW5) * Food5C) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B) + ((1 - eW5) * Food5C) + ((1 -
               eP5) * Food5D))
VPG5 = ((1 - eP5) * Food5D) / (((1 - eL5) * Food5A) + ((1 - eN5) * Food5B) + ((1 - eW5) * Food5C) + ((1 - eP5) *
               * Food5D))
ED5 = 1 / (EDA * KOW + EDB)
KD5 = ED5 * GD5 / WB5
EWW5 = 1 / (1.85 + (155 / KOW))
K15 = EWW5 * GV5 / WB5
KPW5 = (VLB5 * KOW) + (VNB5 * BETA * KOW) + VWB5
K25 = K15 / KPW5
Zorg5 = (VLB5 * Zlipid) + (VNB5 * BETA * Zlipid) + (VWB5 * Zwater)
```


xlvi

```
Zgut5 = VLG5 * Zlipid + VNG5 * BETA * Zlipid + VPG5 * GAMMA * Zlipid + VWG5 * Zwater
      KGB5 = Zgut5 / Zorg5
      KE5 = KGB5 / WB5 * ED5 * GF5
      CB5 = (CWB * K15 * (1 - FPW5) + CSD * K15 * FPW5 + KD5 * Food5E) / (K25 + KE5 + KG5 + KM5)
      dic.Add COMPARTMENT5, CB5
'MODEL CALCULATIONS FOR COMPARTMENT6 (C/O – benthic carnivore/omnivore)
      WB6 = Worksheets("Output").Cells(41, 9)
      VLB6 = Worksheets("Output").Cells(42, 9)
      VWB6 = Worksheets("Output").Cells(43, 9)
      VNB6 = Worksheets("Output").Cells(45, 9)
      VPB6 = 0
      WBL6 = WB6 * VLB6
      QW6 = 88.3 * WB6 ^ 0.6
      QL6 = QW6 * 0.01
      'Temperature dependent growth
      If TW < 17.5 Then
             KG6 = 0.000502 * WB6 ^ -0.2
      Else
             KG6 = 0.00251 * WB6 ^ -0.2
      End If
      GV6 = (1400 * (WB6 ^ 0.65)) / COX
      GD6 = 0.022 * WB6 ^ 0.85 * Exp(0.06 * TW)
      DF61 = Worksheets("Diet").Cells(7, 2)
      DF6p = Worksheets("Diet").Cells(7, 3)
      DF62 = Worksheets("Diet").Cells(7, 4)
      DF63 = Worksheets("Diet").Cells(7, 5)
      DF64 = Worksheets("Diet").Cells(7, 6)
      DF65 = Worksheets("Diet").Cells(7, 7)
      eL6 = Worksheets("Output").Cells(46, 9)
      eP6 = Worksheets("Output").Cells(47, 9)
      eN6 = Worksheets("Output").Cells(48, 9)
      eW6 = Worksheets("Output").Cells(49, 9)
      FPW6 = Worksheets("Output").Cells(50, 9)
      Food6A = DF61 * VLBsed + DF6p * VLBpart DET + DF62 * VLB2 + DF63 * VLB3 + DF64 * VLB4 + DF65 *
      Food6B = DF61 * VNBsed + DF6p * VNBpart DET + DF62 * VNB2 + DF63 * VNB3 + DF64 * VNB4 + DF65 *
                 VNB5
      Food6C = DF61 * VWBsed + DF6p * VWBpart DET + DF62 * VWB2 + DF63 * VWB3 + DF64 * VWB4 + DF65
                  * VWB5
      Food6D = DF61 * VPBsed + DF6p * VPBpart DET + DF62 * VPB2 + DF63 * VPB3 + DF64 * VPB4 + DF65 *
                 VPB5
      Food6E = DF61 * CST + DF6p * CFL + DF62 * CB2 + DF63 * CB3 + DF64 * CB4 + DF65 * CB5
      GF6 = (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B) + ((1 - eW6) * Food6C) + ((1 - eP6) * Food6D)) * GD6
      VLG6 = ((1 - eL6) * Food6A) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B) + ((1 - eW6) * Food6C) + ((1 - eP6) + ((1 - eV6) * Food6C) +
                  * Food6D))
      VNG6 = ((1 - eN6) * Food6B) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B) + ((1 - eV6) * Food6C) + ((1 - eV6) *
```


xlvii

```
* Food6D))
    VWG6 = ((1 - eW6) * Food6C) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B) + ((1 - eW6) * Food6C) + ((1 -
             eP6) * Food6D))
    VPG6 = ((1 - eP6) * Food6D) / (((1 - eL6) * Food6A) + ((1 - eN6) * Food6B) + ((1 - eW6) * Food6C) + ((1 - eP6) *
             * Food6D))
    ED6 = 1 / (EDA * KOW + EDB)
    KD6 = ED6 * GD6 / WB6
    EWW6 = 1 / (1.85 + (155 / KOW))
    K16 = EWW6 * GV6 / WB6
    KPW6 = (VLB6 * KOW) + (VNB6 * BETA * KOW) + VWB6
    K26 = K16 / KPW6
    Zorg6 = (VLB6 * Zlipid) + (VNB6 * BETA * Zlipid) + (VWB6 * Zwater)
    Zgut6 = VLG6 * Zlipid + VNG6 * BETA * Zlipid + VPG6 * GAMMA * Zlipid + VWG6 * Zwater
    KGB6 = Zgut6 / Zorg6
    KE6 = KGB6 / WB6 * ED6 * GF6
    CB6 = (CWB * K16 * (1 - FPW6) + CSD * K16 * FPW6 + KD6 * Food6E) / (K26 + KE6 + KG6 + KM6)
    dic.Add COMPARTMENT6, CB6
'MODEL CALCULATIONS FOR COMPARTMENT7 (FFF - filter feeding fish)
    WB7 = Worksheets("Output").Cells(41, 10)
    VLB7 = Worksheets("Output").Cells(42, 10)
    VWB7 = Worksheets("Output").Cells(43, 10)
    VNB7 = Worksheets("Output").Cells(45, 10)
    VPB7 = 0
    WBL7 = WB7 * VLB7
    QW7 = 88.3 * WB7 ^ 0.6
    QL7 = QW7 * 0.01
    'Temperature dependent growth
    If TW < 17.5 Then
         KG7 = 0.000502 * WB7 ^ -0.2
    Else
          KG7 = 0.00251 * WB7 ^ -0.2
    End If
    GV7 = (1400 * (WB7 ^ 0.65)) / COX
    GD7 = 0.022 * WB7 ^ 0.85 * Exp(0.06 * TW)
    DF71 = Worksheets("Diet").Cells(8, 2)
    DF7p = Worksheets("Diet").Cells(8, 3)
    DF72 = Worksheets("Diet").Cells(8, 4)
    DF73 = Worksheets("Diet").Cells(8, 5)
    DF74 = Worksheets("Diet").Cells(8, 6)
    DF75 = Worksheets("Diet").Cells(8, 7)
    DF76 = Worksheets("Diet").Cells(8, 8)
    eL7 = Worksheets("Output").Cells(46, 10)
    eP7 = Worksheets("Output").Cells(47, 10)
    eN7 = Worksheets("Output").Cells(48, 10)
    eW7 = Worksheets("Output").Cells(49, 10)
```



```
FPW7 = Worksheets("Output").Cells(50, 10)
          Food7A = DF71 * VLBsed + DF7p * VLBpart + DF72 * VLB2 + DF73 * VLB3 + DF74 * VLB4 + DF75 * VLB5 +
                            DF76 * VLB6
          Food7B = DF71 * VNBsed + DF7p * VNBpart + DF72 * VNB2 + DF73 * VNB3 + DF74 * VNB4 + DF75 * VNB5
                            + DF76 * VNB6
          Food7C = DF71 * VWBsed + DF7p * VWBpart + DF72 * VWB2 + DF73 * VWB3 + DF74 * VWB4 + DF75 *
                            VWB5 + DF76 * VWB6
          Food7D = DF71 * VPBsed + DF7p * VPBpart + DF72 * VPB2 + DF73 * VPB3 + DF74 * VPB4 + DF75 * VPB5
                             + DF76 * VPB6
          Food7E = DF71 * CST + DF7p * CPART + DF72 * CB2 + DF73 * CB3 + DF74 * CB4 + DF75 * CB5 + DF76 *
                            CB6
          GF7 = (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eP7) * Food7D)) * GD7
          VLG7 = ((1 - eL7) * Food7A) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eP7) + ((1 - eV7) * Food7C) +
                             * Food7D))
          VNG7 = ((1 - eN7) * Food7B) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eP7) + ((1 - eW7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eW7) * Food7B) +
                            * Food7D))
          VWG7 = ((1 - eW7) * Food7C) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eW7) *
                            eP7) * Food7D))
          VPG7 = ((1 - eP7) * Food7D) / (((1 - eL7) * Food7A) + ((1 - eN7) * Food7B) + ((1 - eW7) * Food7C) + ((1 - eP7) *
                            * Food7D))
          ED7 = 1 / (EDA * KOW + EDB)
          KD7 = ED7 * GD7 / WB7
          EWW7 = 1 / (1.85 + (155 / KOW))
          K17 = EWW7 * GV7 / WB7
          KPW7 = (VLB7 * KOW) + (VNB7 * BETA * KOW) + VWB7
          K27 = K17 / KPW7
          Zorg7 = (VLB7 * Zlipid) + (VNB7 * BETA * Zlipid) + (VWB7 * Zwater)
          Zqut7 = VLG7 * Zlipid + VNG7 * BETA * Zlipid + VPG7 * GAMMA * Zlipid + VWG7 * Zwater
          KGB7 = Zgut7 / Zorg7
          KE7 = KGB7 / WB7 * ED7 * GF7
          CB7 = (CWB * K17 * (1 - FPW7) + CSD * K17 * FPW7 + KD7 * Food7E) / (K27 + KE7 + KG7 + KM7)
          dic.Add COMPARTMENT7, CB7
'MODEL CALCULATIONS FOR COMPARTMENT8 (SFF - small forage fish)
          WB8 = Worksheets("Output").Cells(41, 11)
          VLB8 = Worksheets("Output").Cells(42, 11)
          VWB8 = Worksheets("Output").Cells(43, 11)
          VNB8 = Worksheets("Output").Cells(45, 11)
          VPB8 = 0
          WBL8 = WB8 * VLB8
          QW8 = 88.3 * WB8 ^ 0.6
          QL8 = QW8 * 0.01
          'Temperature dependent growth
          If TW < 17.5 Then
                     KG8 = 0.000502 * WB8 ^ -0.2
          Else
                     KG8 = 0.00251 * WB8 ^ -0.2
          End If
```


xlix

```
GV8 = (1400 * (WB8 ^ 0.65)) / COX
       GD8 = 0.022 * WB8 ^ 0.85 * Exp(0.06 * TW)
       DF81 = Worksheets("Diet").Cells(9, 2)
       DF8p = Worksheets("Diet").Cells(9, 3)
       DF82 = Worksheets("Diet").Cells(9, 4)
       DF83 = Worksheets("Diet").Cells(9, 5)
       DF84 = Worksheets("Diet").Cells(9, 6)
       DF85 = Worksheets("Diet").Cells(9, 7)
       DF86 = Worksheets("Diet").Cells(9, 8)
       DF87 = Worksheets("Diet").Cells(9, 9)
       eL8 = Worksheets("Output").Cells(46, 11)
       eP8 = Worksheets("Output").Cells(47, 11)
       eN8 = Worksheets("Output").Cells(48, 11)
       eW8 = Worksheets("Output").Cells(49, 11)
       FPW8 = Worksheets("Output").Cells(50, 11)
       Food8A = DF81 * VLBsed + DF8p * VLBpart_DET + DF82 * VLB2 + DF83 * VLB3 + DF84 * VLB4 + DF85 *
                    VLB5 + DF86 * VLB6 + DF87 * VLB7
       Food8B = DF81 * VNBsed + DF8p * VNBpart DET + DF82 * VNB2 + DF83 * VNB3 + DF84 * VNB4 + DF85 *
                    VNB5 + DF86 * VNB6 + DF87 * VNB7
       Food8C = DF81 * VWBsed + DF8p * VWBpart DET + DF82 * VWB2 + DF83 * VWB3 + DF84 * VWB4 + DF85
                     * VWB5 + DF86 * VWB6 + DF87 * VWB7
       Food8D = DF81 * VPBsed + DF8p * VPBpart DET + DF82 * VPB2 + DF83 * VPB3 + DF84 * VPB4 + DF85 *
                     VPB5 + DF86 * VPB6 + DF87 * VPB7
       Food8E = DF81 * CST + DF8p * CFL + DF82 * CB2 + DF83 * CB3 + DF84 * CB4 + DF85 * CB5 + DF86 * CB6
                    + DF87 * CB7
       GF8 = (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) * Food8D)) * GD8
       VLG8 = ((1 - eL8) * Food8A) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) * Food8C) + ((1 - eV8) *
                     * Food8D))
       VNG8 = ((1 - eN8) * Food8B) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8) * Food8B) + ((1 - eV8) *
                     * Food8D))
       VWG8 = ((1 - eW8) * Food8C) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eV8) *
                    eP8) * Food8D))
       VPG8 = ((1 - eP8) * Food8D) / (((1 - eL8) * Food8A) + ((1 - eN8) * Food8B) + ((1 - eW8) * Food8C) + ((1 - eP8)
                     * Food8D))
       ED8 = 1 / (EDA * KOW + EDB)
       KD8 = ED8 * GD8 / WB8
       EWW8 = 1 / (1.85 + (155 / KOW))
       K18 = EWW8 * GV8 / WB8
       KPW8 = (VLB8 * KOW) + (VNB8 * BETA * KOW) + VWB8
       K28 = K18 / KPW8
       Zorg8 = (VLB8 * Zlipid) + (VNB8 * BETA * Zlipid) + (VWB8 * Zwater)
       Zgut8 = VLG8 * Zlipid + VNG8 * BETA * Zlipid + VPG8 * GAMMA * Zlipid + VWG8 * Zwater
       KGB8 = Zgut8 / Zorg8
       KE8 = KGB8 / WB8 * ED8 * GF8
       CB8 = (CWB * K18 * (1 - FPW8) + CSD * K18 * FPW8 + KD8 * Food8E) / (K28 + KE8 + KG8 + KM8)
       dic.Add COMPARTMENT8, CB8
'MODEL CALCULATIONS FOR COMPARTMENT9 (CAR - carp)
       WB9 = Worksheets("Output").Cells(41, 12)
       VLB9 = Worksheets("Output").Cells(42, 12)
```



```
VWB9 = Worksheets("Output").Cells(43, 12)
VNB9 = Worksheets("Output").Cells(45, 12)
VPB9 = 0
WBL9 = WB9 * VLB9
QW9 = 88.3 * WB9 ^ 0.6
QL9 = QW9 * 0.01
'Temperature dependent growth
If TW < 17.5 Then
           KG9 = 0.000502 * WB9 ^ -0.2
Else
           KG9 = 0.00251 * WB9 ^ -0.2
End If
GV9 = (1400 * (WB9 ^ 0.65)) / COX
GD9 = 0.022 * WB9 ^ 0.85 * Exp(0.06 * TW)
DF91 = Worksheets("Diet").Cells(10, 2)
DF9p = Worksheets("Diet").Cells(10, 3)
DF92 = Worksheets("Diet").Cells(10, 4)
DF93 = Worksheets("Diet").Cells(10, 5)
DF94 = Worksheets("Diet").Cells(10, 6)
DF95 = Worksheets("Diet").Cells(10, 7)
DF96 = Worksheets("Diet").Cells(10, 8)
DF97 = Worksheets("Diet").Cells(10, 9)
DF98 = Worksheets("Diet").Cells(10, 10)
eL9 = Worksheets("Output").Cells(46, 12)
eP9 = Worksheets("Output").Cells(47, 12)
eN9 = Worksheets("Output").Cells(48, 12)
eW9 = Worksheets("Output").Cells(49, 12)
FPW9 = Worksheets("Output").Cells(50, 12)
Food9A = DF91 * VLBsed + DF9p * VLBpart DET + DF92 * VLB2 + DF93 * VLB3 + DF94 * VLB4 + DF95 *
                  VLB5 + DF96 * VLB6 + DF97 * VLB7 + DF98 * VLB8
Food9B = DF91 * VNBsed + DF9p * VNBpart DET + DF92 * VNB2 + DF93 * VNB3 + DF94 * VNB4 + DF95 *
                 VNB5 + DF96 * VNB6 + DF97 * VNB7 + DF98 * VNB8
Food9C = DF91 * VWBsed + DF9p * VWBpart DET + DF92 * VWB2 + DF93 * VWB3 + DF94 * VWB4 + DF95
                  * VWB5 + DF96 * VWB6 + DF97 * VWB7 + DF98 * VWB8
Food9D = DF91 * VPBsed + DF9p * VPBpart DET + DF92 * VPB2 + DF93 * VPB3 + DF94 * VPB4 + DF95 *
                  VPB5 + DF96 * VPB6 + DF97 * VPB7 + DF98 * VPB8
Food9E = DF91 * CST + DF9p * CFL + DF92 * CB2 + DF93 * CB3 + DF94 * CB4 + DF95 * CB5 + DF96 * CB6
                 + DF97 * CB7 + DF98 * CB8 mf
GF9 = (((1 - eL9) * Food9A) + ((1 - eN9) * Food9B) + ((1 - eW9) * Food9C) + ((1 - eP9) * Food9D)) * GD9
VLG9 = ((1 - eL9) * Food9A) / (((1 - eL9) * Food9A) + ((1 - eN9) * Food9B) + ((1 - eW9) * Food9C) + ((1 - eP9) * Food9C) + ((1 - eV9) *
                  * Food9D))
VNG9 = ((1 - eN9) * Food9B) / (((1 - eL9) * Food9A) + ((1 - eN9) * Food9B) + ((1 - eW9) * Food9C) + ((1 - eP9) * Food9B) + ((1 - eW9) *
                  * Food9D))
VWG9 = ((1 - eW9) * Food9C) / (((1 - eL9) * Food9A) + ((1 - eN9) * Food9B) + ((1 - eW9) * Food9C) + ((1 - eV9) *
                  eP9) * Food9D))
VPG9 = ((1 - eP9) * Food9D) / (((1 - eL9) * Food9A) + ((1 - eN9) * Food9B) + ((1 - eW9) * Food9C) + ((1 - eP9) *
                  * Food9D))
ED9 = 1 / (EDA * KOW + EDB)
```



```
KD9 = ED9 * GD9 / WB9
  EWW9 = 1 / (1.85 + (155 / KOW))
  K19 = EWW9 * GV9 / WB9
  KPW9 = (VLB9 * KOW) + (VNB9 * BETA * KOW) + VWB9
  K29 = K19 / KPW9
  Zorg9 = (VLB9 * Zlipid) + (VNB9 * BETA * Zlipid) + (VWB9 * Zwater)
  Zgut9 = VLG9 * Zlipid + VNG9 * BETA * Zlipid + VPG9 * GAMMA * Zlipid + VWG9 * Zwater
  KGB9 = Zgut9 / Zorg9
  KE9 = KGB9 / WB9 * ED9 * GF9
  CB9 = (CPV * (CWB * K19 * (1 - FPW9) + CSD * K19 * FPW9) + KD9 * Food9E) / (K29 + KE9 + KG9 + KM9)
  dic.Add COMPARTMENT9, CB9
'MODEL CALCULATIONS FOR COMPARTMENT10 (CAT - catfish)
  WB10 = Worksheets("Output").Cells(41, 13)
  VLB10 = Worksheets("Output").Cells(42, 13)
  VWB10 = Worksheets("Output").Cells(43, 13)
  VNB10 = Worksheets("Output").Cells(45, 13)
  VPB10 = 0
  WBL10 = WB10 * VLB10
  QW10 = 88.3 * WB10 ^ 0.6
  QL10 = QW10 * 0.01
  'Temperature dependent growth
  If TW < 17.5 Then
    KG10 = 0.000502 * WB10 ^ -0.2
  Fise
    KG10 = 0.00251 * WB10 ^ -0.2
  End If
  GV10 = (1400 * (WB10 ^ 0.65)) / COX
  GD10 = 0.022 * WB10 ^ 0.85 * Exp(0.06 * TW)
  DF101 = Worksheets("Diet").Cells(11, 2)
  DF10p = Worksheets("Diet").Cells(11, 3)
  DF102 = Worksheets("Diet").Cells(11, 4)
  DF103 = Worksheets("Diet").Cells(11, 5)
  DF104 = Worksheets("Diet").Cells(11, 6)
  DF105 = Worksheets("Diet").Cells(11, 7)
  DF106 = Worksheets("Diet").Cells(11, 8)
  DF107 = Worksheets("Diet").Cells(11, 9)
  DF108 = Worksheets("Diet").Cells(11, 10)
  DF109 = Worksheets("Diet").Cells(11, 11)
  eL10 = Worksheets("Output").Cells(46, 13)
  eP10 = Worksheets("Output").Cells(47, 13)
  eN10 = Worksheets("Output").Cells(48, 13)
  eW10 = Worksheets("Output").Cells(49, 13)
  FPW10 = Worksheets("Output").Cells(50, 13)
  Food10A = DF101 * VLBsed + DF10p * VLBpart DET + DF102 * VLB2 + DF103 * VLB3 + DF104 * VLB4 +
      DF105 * VLB5 + DF106 * VLB6 + DF107 * VLB7 + DF108 * VLB8 + DF109 * VLB9
```



```
Food10B = DF101 * VNBsed + DF10p * VNBpart DET + DF102 * VNB2 + DF103 * VNB3 + DF104 * VNB4 +
      DF105 * VNB5 + DF106 * VNB6 + DF107 * VNB7 + DF108 * VNB8 + DF109 * VNB9
  Food10C = DF101 * VWBsed + DF10p * VWBpart DET + DF102 * VWB2 + DF103 * VWB3 + DF104 * VWB4
      + DF105 * VWB5 + DF106 * VWB6 + DF107 * VWB7 + DF108 * VWB8 + DF109 * VWB9
  Food10D = DF101 * VPBsed + DF10p * VPBpart_DET + DF102 * VPB2 + DF103 * VPB3 + DF104 * VPB4 +
     DF105 * VPB5 + DF106 * VPB6 + DF107 * VPB7 + DF108 * VPB8 + DF109 * VPB9
  Food10E = DF101 * CST + DF10p * CFL + DF102 * CB2 + DF103 * CB3 + DF104 * CB4 + DF105 * CB5 +
     DF106 * CB6 + DF107 * CB7 + DF108 * CB8_mf + DF109 * CB9
  GF10 = (((1 - eL10) * Food10A) + ((1 - eN10) * Food10B) + ((1 - eW10) * Food10C) + ((1 - eP10) * Food10D))
  VLG10 = ((1 - eL10) * Food10A) / (((1 - eL10) * Food10A) + ((1 - eN10) * Food10B) + ((1 - eW10) * Food10C)
      + ((1 - eP10) * Food10D))
  VNG10 = ((1 - eN10) * Food10B) / (((1 - eL10) * Food10A) + ((1 - eN10) * Food10B) + ((1 - eW10) * Food10C)
      + ((1 - eP10) * Food10D))
  VWG10 = ((1 - eW10) * Food10C) / (((1 - eL10) * Food10A) + ((1 - eN10) * Food10B) + ((1 - eW10) *
     Food10C) + ((1 - eP10) * Food10D))
  VPG10 = ((1 - eP10) * Food10D) / (((1 - eL10) * Food10A) + ((1 - eN10) * Food10B) + ((1 - eW10) * Food10C)
     + ((1 - eP10) * Food10D))
  ED10 = 1 / (EDA * KOW + EDB)
  KD10 = ED10 * GD10 / WB10
  EWW10 = 1 / (1.85 + (155 / KOW))
  K110 = EWW10 * GV10 / WB10
  KPW10 = (VLB10 * KOW) + (VNB10 * BETA * KOW) + VWB10
  K210 = K110 / KPW10
  Zorg10 = (VLB10 * Zlipid) + (VNB10 * BETA * Zlipid) + (VWB10 * Zwater)
  Zgut10 = VLG10 * Zlipid + VNG10 * BETA * Zlipid + VPG10 * GAMMA * Zlipid + VWG10 * Zwater
  KGB10 = Zgut10 / Zorg10
  KE10 = KGB10 / WB10 * ED10 * GF10
  CB10 = (CWB * K110 * (1 - FPW10) + CSD * K110 * FPW10 + KD10 * Food10E) / (K210 + KE10 + KG10 +
     KM10)
  dic.Add COMPARTMENT10, CB10
'MODEL CALCULATIONS FOR COMPARTMENT11 (WP - white perch)
  WB11 = Worksheets("Output").Cells(41, 14)
  VLB11 = Worksheets("Output").Cells(42, 14)
  VWB11 = Worksheets("Output").Cells(43, 14)
  VNB11 = Worksheets("Output").Cells(45, 14)
  VPB11 = 0
  WBL11 = WB11 * VLB11
  QW11 = 88.3 * WB11 ^ 0.6
  QL11 = QW11 * 0.01
  'Temperature dependent growth
  If TW < 17.5 Then
    KG11 = 0.000502 * WB11 ^ -0.2
  Else
    KG11 = 0.00251 * WB11 ^ -0.2
  End If
  GV11 = (1400 * (WB11 ^ 0.65)) / COX
```



```
GD11 = 0.022 * WB11 ^ 0.85 * Exp(0.06 * TW)
DF111 = Worksheets("Diet").Cells(12, 2)
DF11p = Worksheets("Diet").Cells(12, 3)
DF112 = Worksheets("Diet").Cells(12, 4)
DF113 = Worksheets("Diet").Cells(12, 5)
DF114 = Worksheets("Diet").Cells(12, 6)
DF115 = Worksheets("Diet").Cells(12, 7)
DF116 = Worksheets("Diet").Cells(12, 8)
DF117 = Worksheets("Diet").Cells(12, 9)
DF118 = Worksheets("Diet").Cells(12, 10)
DF119 = Worksheets("Diet").Cells(12, 11)
DF1110 = Worksheets("Diet").Cells(12, 12)
eL11 = Worksheets("Output").Cells(46, 14)
eP11 = Worksheets("Output").Cells(47, 14)
eN11 = Worksheets("Output").Cells(48, 14)
eW11 = Worksheets("Output").Cells(49, 14)
FPW11 = Worksheets("Output").Cells(50, 14)
Food11A = DF111 * VLBsed + DF11p * VLBpart_DET + DF112 * VLB2 + DF113 * VLB3 + DF114 * VLB4 +
   DF115 * VLB5 + DF116 * VLB6 + DF117 * VLB7 + DF118 * VLB8 + DF119 * VLB9 + DF1110 * VLB10
Food11B = DF111 * VNBsed + DF11p * VNBpart_DET + DF112 * VNB2 + DF113 * VNB3 + DF114 * VNB4 +
   DF115 * VNB5 + DF116 * VNB6 + DF117 * VNB7 + DF118 * VNB8 + DF119 * VNB9 + DF1110 * VNB10
Food11C = DF111 * VWBsed + DF11p * VWBpart DET + DF112 * VWB2 + DF113 * VWB3 + DF114 * VWB4
   + DF115 * VWB5 + DF116 * VWB6 + DF117 * VWB7 + DF118 * VWB8 + DF119 * VWB9 + DF1110 *
   VWB10
Food11D = DF111 * VPBsed + DF11p * VPBpart_DET + DF112 * VPB2 + DF113 * VPB3 + DF114 * VPB4 +
   DF115 * VPB5 + DF116 * VPB6 + DF117 * VPB7 + DF118 * VPB8 + DF119 * VPB9 + DF1110 * VPB10
Food11E = DF111 * CST + DF11p * CFL + DF112 * CB2 + DF113 * CB3 + DF114 * CB4 + DF115 * CB5 +
   DF116 * CB6 + DF117 * CB7 + DF118 * CB8_mf + DF119 * CB9 + DF1110 * CB10
GF11 = (((1 - eL11) * Food11A) + ((1 - eN11) * Food11B) + ((1 - eW11) * Food11C) + ((1 - eP11) * Food11D))
VLG11 = ((1 - eL11) * Food11A) / (((1 - eL11) * Food11A) + ((1 - eN11) * Food11B) + ((1 - eW11) * Food11C)
   + ((1 - eP11) * Food11D))
VNG11 = ((1 - eN11) * Food11B) / (((1 - eL11) * Food11A) + ((1 - eN11) * Food11B) + ((1 - eW11) * Food11C)
   + ((1 - eP11) * Food11D))
VWG11 = ((1 - eW11) * Food11C) / (((1 - eL11) * Food11A) + ((1 - eN11) * Food11B) + ((1 - eW11) *
   Food11C) + ((1 - eP11) * Food11D))
VPG11 = ((1 - eP11) * Food11D) / (((1 - eL11) * Food11A) + ((1 - eN11) * Food11B) + ((1 - eW11) * Food11C)
   + ((1 - eP11) * Food11D))
ED11 = 1 / (EDA * KOW + EDB)
KD11 = ED11 * GD11 / WB11
EWW11 = 1 / (1.85 + (155 / KOW))
K111 = EWW11 * GV11 / WB11
KPW11 = (VLB11 * KOW) + (VNB11 * BETA * KOW) + VWB11
K211 = K111 / KPW11
Zorg11 = (VLB11 * Zlipid) + (VNB11 * BETA * Zlipid) + (VWB11 * Zwater)
Zgut11 = VLG11 * Zlipid + VNG11 * BETA * Zlipid + VPG11 * GAMMA * Zlipid + VWG11 * Zwater
KGB11 = Zgut11 / Zorg11
KE11 = KGB11 / WB11 * ED11 * GF11
CB11 = (CWB * K111 * (1 - FPW11) + CSD * K111 * FPW11 + KD11 * Food11E) / (K211 + KE11 + KG11 +
   KM11)
dic.Add COMPARTMENT11, CB11
```



```
WB12 = Worksheets("Output").Cells(41, 15)
VLB12 = Worksheets("Output").Cells(42, 15)
VWB12 = Worksheets("Output").Cells(43, 15)
VNB12 = Worksheets("Output").Cells(45, 15)
VPB12 = 0
WBL12 = WB12 * VLB12
QW12 = 88.3 * WB12 ^ 0.6
QL12 = QW12 * 0.01
'Temperature dependent growth
If TW < 17.5 Then
  KG12 = 0.000502 * WB12 ^ -0.2
Else
  KG12 = 0.00251 * WB12 ^ -0.2
End If
GV12 = (1400 * (WB12 ^ 0.65)) / COX
GD12 = 0.022 * WB12 ^ 0.85 * Exp(0.06 * TW)
DF121 = Worksheets("Diet").Cells(13, 2)
DF12p = Worksheets("Diet").Cells(13, 3)
DF122 = Worksheets("Diet").Cells(13, 4)
DF123 = Worksheets("Diet").Cells(13, 5)
DF124 = Worksheets("Diet").Cells(13, 6)
DF125 = Worksheets("Diet").Cells(13, 7)
DF126 = Worksheets("Diet").Cells(13, 8)
DF127 = Worksheets("Diet").Cells(13, 9)
DF128 = Worksheets("Diet").Cells(13, 10)
DF129 = Worksheets("Diet").Cells(13, 11)
DF1210 = Worksheets("Diet").Cells(13, 12)
DF1211 = Worksheets("Diet").Cells(13, 13)
eL12 = Worksheets("Output").Cells(46, 15)
eP12 = Worksheets("Output").Cells(47, 15)
eN12 = Worksheets("Output").Cells(48, 15)
eW12 = Worksheets("Output").Cells(49, 15)
FPW12 = Worksheets("Output").Cells(50, 15)
Food12A = DF121 * VLBsed + DF12p * VLBpart DET + DF122 * VLB2 + DF123 * VLB3 + DF124 * VLB4 +
   DF125 * VLB5 + DF126 * VLB6 + DF127 * VLB7 + DF128 * VLB8 + DF129 * VLB9 + DF1210 * VLB10 +
   DF1211 * VLB11
Food12B = DF121 * VNBsed + DF12p * VNBpart DET + DF122 * VNB2 + DF123 * VNB3 + DF124 * VNB4 +
   DF125 * VNB5 + DF126 * VNB6 + DF127 * VNB7 + DF128 * VNB8 + DF129 * VNB9 + DF1210 * VNB10 +
   DF1211 * VNB11
Food12C = DF121 * VWBsed + DF12p * VWBpart_DET + DF122 * VWB2 + DF123 * VWB3 + DF124 * VWB4
   + DF125 * VWB5 + DF126 * VWB6 + DF127 * VWB7 + DF128 * VWB8 + DF129 * VWB9 + DF1210 *
   VWB10 + DF1211 * VWB11
Food12D = DF121 * VPBsed + DF12p * VPBpart DET + DF122 * VPB2 + DF123 * VPB3 + DF124 * VPB4 +
   DF125 * VPB5 + DF126 * VPB6 + DF127 * VPB7 + DF128 * VPB8 + DF129 * VPB9 + DF1210 * VPB10 +
   DF1211 * VPB11
Food12E = DF121 * CST + DF12p * CFL + DF122 * CB2 + DF123 * CB3 + DF124 * CB4 + DF125 * CB5 +
```

'MODEL CALCULATIONS FOR COMPARTMENT12 (AE - american eel)

lv

```
DF126 * CB6 + DF127 * CB7 + DF128 * CB8_mf + DF129 * CB9 + DF1210 * CB10 + DF1211 * CB11
  GF12 = (((1 - eL12) * Food12A) + ((1 - eN12) * Food12B) + ((1 - eW12) * Food12C) + ((1 - eP12) * Food12D))
      * GD12
  VLG12 = ((1 - eL12) * Food12A) / (((1 - eL12) * Food12A) + ((1 - eN12) * Food12B) + ((1 - eW12) * Food12C)
      + ((1 - eP12) * Food12D))
  VNG12 = ((1 - eN12) * Food12B) / (((1 - eL12) * Food12A) + ((1 - eN12) * Food12B) + ((1 - eW12) * Food12C)
      + ((1 - eP12) * Food12D))
  VWG12 = ((1 - eW12) * Food12C) / (((1 - eL12) * Food12A) + ((1 - eN12) * Food12B) + ((1 - eW12) *
      Food12C) + ((1 - eP12) * Food12D))
  VPG12 = ((1 - eP12) * Food12D) / (((1 - eL12) * Food12A) + ((1 - eN12) * Food12B) + ((1 - eW12) * Food12C)
      + ((1 - eP12) * Food12D))
  ED12 = 1 / (EDA * KOW + EDB)
  KD12 = ED12 * GD12 / WB12
  EWW12 = 1 / (1.85 + (155 / KOW))
  K112 = EWW12 * GV12 / WB12
  KPW12 = (VLB12 * KOW) + (VNB12 * BETA * KOW) + VWB12
  K212 = K112 / KPW12
  Zorg12 = (VLB12 * Zlipid) + (VNB12 * BETA * Zlipid) + (VWB12 * Zwater)
  Zgut12 = VLG12 * Zlipid + VNG12 * BETA * Zlipid + VPG12 * GAMMA * Zlipid + VWG12 * Zwater
  KGB12 = Zgut12 / Zorg12
  KE12 = KGB12 / WB12 * ED12 * GF12
  CB12 = (CWB * K112 * (1 - FPW12) + CSD * K112 * FPW12 + KD12 * Food12E) / (K212 + KE12 + KG12 +
      KM12)
  dic.Add COMPARTMENT12, CB12
'MODEL CALCULATIONS FOR COMPARTMENT13 (BAS - bass)
  WB13 = Worksheets("Output").Cells(41, 16)
  VLB13 = Worksheets("Output").Cells(42, 16)
  VWB13 = Worksheets("Output").Cells(43, 16)
  VNB13 = Worksheets("Output").Cells(45, 16)
  VPB13 = 0
  WBL13 = WB13 * VLB13
  QW13 = 88.3 * WB13 ^ 0.6
  QL13 = QW13 * 0.01
  'Temperature dependent growth
  If TW < 17.5 Then
    KG13 = 0.000502 * WB13 ^ -0.2
  Else
    KG13 = 0.00251 * WB13 ^ -0.2
  End If
  GV13 = (1400 * (WB13 ^ 0.65)) / COX
  GD13 = 0.022 * WB13 ^ 0.85 * Exp(0.06 * TW)
  DF131 = Worksheets("Diet").Cells(14, 2)
  DF13p = Worksheets("Diet").Cells(14, 3)
  DF132 = Worksheets("Diet").Cells(14, 4)
  DF133 = Worksheets("Diet").Cells(14, 5)
  DF134 = Worksheets("Diet").Cells(14, 6)
```



```
DF135 = Worksheets("Diet").Cells(14, 7)
DF136 = Worksheets("Diet").Cells(14, 8)
DF137 = Worksheets("Diet").Cells(14, 9)
DF138 = Worksheets("Diet").Cells(14, 10)
DF139 = Worksheets("Diet").Cells(14, 11)
DF1310 = Worksheets("Diet").Cells(14, 12)
DF1311 = Worksheets("Diet").Cells(14, 13)
DF1312 = Worksheets("Diet").Cells(14, 14)
eL13 = Worksheets("Output").Cells(46, 16)
eP13 = Worksheets("Output").Cells(47, 16)
eN13 = Worksheets("Output").Cells(48, 16)
eW13 = Worksheets("Output").Cells(49, 16)
FPW13 = Worksheets("Output").Cells(50, 16)
Food13A = DF131 * VLBsed + DF13p * VLBpart DET + DF132 * VLB2 + DF133 * VLB3 + DF134 * VLB4 +
      DF135 * VLB5 + DF136 * VLB6 + DF137 * VLB7 + DF138 * VLB8 + DF139 * VLB9 + DF1310 * VLB10 +
      DF1311 * VLB11 + DF1312 * VLB12
Food13B = DF131 * VNBsed + DF13p * VNBpart DET + DF132 * VNB2 + DF133 * VNB3 + DF134 * VNB4 +
      DF135 * VNB5 + DF136 * VNB6 + DF137 * VNB7 + DF138 * VNB8 + DF139 * VNB9 + DF1310 * VNB10 +
      DF1311 * VNB11 + DF1312 * VNB12
Food13C = DF131 * VWBsed + DF13p * VWBpart DET + DF132 * VWB2 + DF133 * VWB3 + DF134 * VWB4
      + DF135 * VWB5 + DF136 * VWB6 + DF137 * VWB7 + DF138 * VWB8 + DF139 * VWB9 + DF1310 *
      VWB10 + DF1311 * VWB11 + DF1312 * VWB12
Food13D = DF131 * VPBsed + DF13p * VPBpart DET + DF132 * VPB2 + DF133 * VPB3 + DF134 * VPB4 +
      DF135 * VPB5 + DF136 * VPB6 + DF137 * VPB7 + DF138 * VPB8 + DF139 * VPB9 + DF1310 * VPB10 +
      DF1311 * VPB11 + DF1312 * VPB12
Food13E = DF131 * CST + DF13p * CFL + DF132 * CB2 + DF133 * CB3 + DF134 * CB4 + DF135 * CB5 +
      DF136 * CB6 + DF137 * CB7 + DF138 * CB8 mf + DF139 * CB9 + DF1310 * CB10 + DF1311 * CB11 +
      DF1312 * CB12
GF13 = (((1 - eL13) * Food13A) + ((1 - eN13) * Food13B) + ((1 - eW13) * Food13C) + ((1 - eP13) * Food13D))
      * GD13
VLG13 = ((1 - eL13) * Food13A) / (((1 - eL13) * Food13A) + ((1 - eN13) * Food13B) + ((1 - eW13) * Food13C)
      + ((1 - eP13) * Food13D))
VNG13 = ((1 - eN13) * Food13B) + ((1 - eL13) * Food13A) + ((1 - eN13) * Food13B) + ((1 - eW13) * Food13C)
      + ((1 - eP13) * Food13D))
VWG13 = ((1 - eW13) * Food13C) / (((1 - eL13) * Food13A) + ((1 - eN13) * Food13B) + ((1 - eW13) *
      Food13C) + ((1 - eP13) * Food13D))
VPG13 = ((1 - eP13) * Food13D) / (((1 - eL13) * Food13A) + ((1 - eN13) * Food13B) + ((1 - eW13) * Food13C) + ((1 - eW13
      + ((1 - eP13) * Food13D))
ED13 = 1 / (EDA * KOW + EDB)
KD13 = ED13 * GD13 / WB13
EWW13 = 1 / (1.85 + (155 / KOW))
K113 = EWW13 * GV13 / WB13
KPW13 = (VLB13 * KOW) + (VNB13 * BETA * KOW) + VWB13
K213 = K113 / KPW13
Zorg13 = (VLB13 * Zlipid) + (VNB13 * BETA * Zlipid) + (VWB13 * Zwater)
Zgut13 = VLG13 * Zlipid + VNG13 * BETA * Zlipid + VPG13 * GAMMA * Zlipid + VWG13 * Zwater
KGB13 = Zgut13 / Zorg13
KE13 = KGB13 / WB13 * ED13 * GF13
CB13 = (CWB * K113 * (1 - FPW13) + CSD * K113 * FPW13 + KD13 * Food13E) / (K213 + KE13 + KG13 +
      KM13)
dic.Add COMPARTMENT13, CB13
```


lvii

```
'MODEL CALCULATIONS FOR COMPARTMENT14 (BC - blue crab)
  WB14 = Worksheets("BC").Cells(5, 5)
  VLB14 = Worksheets("BC").Cells(6, 5)
  VWB14 = Worksheets("BC").Cells(7, 5)
  VNB14 = Worksheets("BC").Cells(9, 5)
  VPB14 = 0
  WBL14 = WB14 * VLB14
  QW14 = 88.3 * WB14 ^ 0.6
  QL14 = QW14 * 0.01
  'Temperature dependent growth
  If TW < 17.5 Then
    KG14 = 0.000502 * WB14 ^ -0.2
  Fise
    KG14 = 0.00251 * WB14 ^ -0.2
  Fnd If
  GV14 = (1400 * (WB14 ^ 0.65)) / COX
  GD14 = 0.022 * WB14 ^ 0.85 * Exp(0.06 * TW)
  DF141 = Worksheets("BC").Cells(33, 2)
  DF14p = Worksheets("BC").Cells(33, 3)
  DF142 = Worksheets("BC").Cells(33, 4)
  DF143 = Worksheets("BC").Cells(33, 5)
  DF144 = Worksheets("BC").Cells(33, 6)
  DF145 = Worksheets("BC").Cells(33, 7)
  DF146 = Worksheets("BC").Cells(33, 8)
  DF147 = Worksheets("BC").Cells(33, 9)
  DF148 = Worksheets("BC").Cells(33, 10)
  DF149 = Worksheets("BC").Cells(33, 11)
  DF1410 = Worksheets("BC").Cells(33, 12)
  DF1411 = Worksheets("BC").Cells(33, 13)
  DF1412 = Worksheets("BC").Cells(33, 14)
  DF1413 = Worksheets("BC").Cells(33, 15)
  eL14 = Worksheets("BC").Cells(10, 5)
  eP14 = Worksheets("BC").Cells(11, 5)
  eN14 = Worksheets("BC").Cells(12, 5)
  eW14 = Worksheets("BC").Cells(13, 5)
  FPW14 = Worksheets("BC").Cells(14, 5)
  Food14A = DF141 * VLBsed + DF14p * VLBpart DET + DF142 * VLB2 + DF143 * VLB3 + DF144 * VLB4 +
      DF145 * VLB5 + DF146 * VLB6 + DF147 * VLB7 + DF148 * VLB8 + DF149 * VLB9 + DF1410 * VLB10 +
      DF1411 * VLB11 + DF1412 * VLB12 + DF1413 * VLB13
  Food14B = DF141 * VNBsed + DF14p * VNBpart_DET + DF142 * VNB2 + DF143 * VNB3 + DF144 * VNB4 +
     DF145 * VNB5 + DF146 * VNB6 + DF147 * VNB7 + DF148 * VNB8 + DF149 * VNB9 + DF1410 * VNB10 +
     DF1411 * VNB11 + DF1412 * VNB12 + DF1413 * VNB13
  Food14C = DF141 * VWBsed + DF14p * VWBpart_DET + DF142 * VWB2 + DF143 * VWB3 + DF144 * VWB4
     + DF145 * VWB5 + DF146 * VWB6 + DF147 * VWB7 + DF148 * VWB8 + DF149 * VWB9 + DF1410 *
     VWB10 + DF1411 * VWB11 + DF1412 * VWB12 + DF1413 * VWB13
  Food14D = DF141 * VPBsed + DF14p * VPBpart DET + DF142 * VPB2 + DF143 * VPB3 + DF144 * VPB4 +
      DF145 * VPB5 + DF146 * VPB6 + DF147 * VPB7 + DF148 * VPB8 + DF149 * VPB9 + DF1410 * VPB10 +
      DF1411 * VPB11 + DF1412 * VPB12 + DF1413 * VPB13
```


lviii

```
Food14E = DF141 * CST + DF14p * CFL + DF142 * CB2 + DF143 * CB3 + DF144 * CB4 + DF145 * CB5 +
   DF146 * CB6 + DF147 * CB7 + DF148 * CB8_mf + DF149 * CB9 + DF1410 * CB10 + DF1411 * CB11 +
   DF1412 * CB12 + DF1413 * CB13
GF14 = (((1 - eL14) * Food14A) + ((1 - eN14) * Food14B) + ((1 - eW14) * Food14C) + ((1 - eP14) * Food14D))
   * GD14
VLG14 = ((1 - eL14) * Food14A) / (((1 - eL14) * Food14A) + ((1 - eN14) * Food14B) + ((1 - eW14) * Food14C)
   + ((1 - eP14) * Food14D))
VNG14 = ((1 - eN14) * Food14B) / (((1 - eL14) * Food14A) + ((1 - eN14) * Food14B) + ((1 - eW14) * Food14C)
   + ((1 - eP14) * Food14D))
VWG14 = ((1 - eW14) * Food14C) / (((1 - eL14) * Food14A) + ((1 - eN14) * Food14B) + ((1 - eW14) *
   Food14C) + ((1 - eP14) * Food14D))
VPG14 = ((1 - eP14) * Food14D) / (((1 - eL14) * Food14A) + ((1 - eN14) * Food14B) + ((1 - eW14) * Food14C)
   + ((1 - eP14) * Food14D))
ED14 = 1 / (EDA * KOW + EDB)
KD14 = ED14 * GD14 / WB14
EWW14 = 1 / (1.85 + (155 / KOW))
K114 = EWW14 * GV14 / WB14
KPW14 = (VLB14 * KOW) + (VNB14 * BETA * KOW) + VWB14
K214 = K114 / KPW14
Zorg14 = (VLB14 * Zlipid) + (VNB14 * BETA * Zlipid) + (VWB14 * Zwater)
Zgut14 = VLG14 * Zlipid + VNG14 * BETA * Zlipid + VPG14 * GAMMA * Zlipid + VWG14 * Zwater
KGB14 = Zgut14 / Zorg14
KE14 = KGB14 / WB14 * ED14 * GF14
CB14 = (CWB * K114 * (1 - FPW14) + CSD * K114 * FPW14 + KD14 * Food14E) / (K214 + KE14 + KG14 +
   KM14)
dic.Add COMPARTMENT14, CB14
```

End Sub

4 References

- Arnot JA, Gobas FAPC. 2004. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343-2355.
- EPA. 2014. Technical factsheet on: DIOXIN (2,3,7,8-TCDD). National Primary Drinking Water Regulations. US Environmental Protection Agency.
- Gobas FAPC. 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: application to Lake Ontario. Ecol Model 69:1-17.
- Morrison HA, Gobas FAPC, Lazar R, Haffner GD. 1996. Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ Sci Technol 30:3377-3384.
- Morrison HA, Gobas FAPC, Lazar R, Whittle DM, Haffner GD. 1997. Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in Western Lake Erie. Environ Sci Technol 31:3267-73.
- Shiu WY, Mackay D. 1986. A critical review of aqueous solubilities, vapor pressures, Henry's Law constants, and octanol-water partition coefficients of the polychlorinated biphenyls. J Phys Chem Ref Data 15:911-929.
- Thomann RV, Connolly JP, Parkerton T. 1992. Modeling accumulation of organic chemicals in aquatic food webs. In: Gobas FAPC, McCorquodale JA, eds, Chemical dynamics in fresh water ecosystems. Lewis Publishers, Boca Raton, FL, pp 153-183.
- Windward. [in prep]. Dissolved oxygen monitoring program data report for the Lower Passaic River study area: summer and fall 2012. Draft. Prepared for Cooperating Parties Group, Newark, NJ. Submitted to USEPA September 3, 2013. Lower Passaic River Restoration Project. Windward Environmental LLC, Seattle, WA.

